Classification of Shoulder X-ray Images with Deep Learning Ensemble Models

被引:27
作者
Uysal, Fatih [1 ]
Hardalac, Firat [1 ]
Peker, Ozan [1 ]
Tolunay, Tolga [2 ]
Tokgoz, Nil [3 ]
机构
[1] Gazi Univ, Fac Engn, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey
[2] Gazi Univ, Fac Med, Dept Orthopaed & Traumatol, TR-06570 Ankara, Turkey
[3] Gazi Univ, Fac Med, Dept Radiol, TR-06570 Ankara, Turkey
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 06期
关键词
biomedical image classification; bone fractures; deep learning; ensemble learning; shoulder; transfer learning; X-ray; ABNORMALITY DETECTION;
D O I
10.3390/app11062723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fractures occur in the shoulder area, which has a wider range of motion than other joints in the body, for various reasons. To diagnose these fractures, data gathered from X-radiation (X-ray), magnetic resonance imaging (MRI), or computed tomography (CT) are used. This study aims to help physicians by classifying shoulder images taken from X-ray devices as fracture/non-fracture with artificial intelligence. For this purpose, the performances of 26 deep learning-based pre-trained models in the detection of shoulder fractures were evaluated on the musculoskeletal radiographs (MURA) dataset, and two ensemble learning models (EL1 and EL2) were developed. The pre-trained models used are ResNet, ResNeXt, DenseNet, VGG, Inception, MobileNet, and their spinal fully connected (Spinal FC) versions. In the EL1 and EL2 models developed using pre-trained models with the best performance, test accuracy was 0.8455, 0.8472, Cohen's kappa was 0.6907, 0.6942 and the area that was related with fracture class under the receiver operating characteristic (ROC) curve (AUC) was 0.8862, 0.8695. As a result of 28 different classifications in total, the highest test accuracy and Cohen's kappa values were obtained in the EL2 model, and the highest AUC value was obtained in the EL1 model.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Deep Learning-based Anomaly Detection on X-Ray Images of Fuel Cell Electrodes
    Jensen, Simon B.
    Moeslund, Thomas B.
    Andreasen, Soren J.
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 323 - 330
  • [42] Brain tumor X-ray images enhancement and classification using anisotropic diffusion filter and transfer learning models
    Gomaa M.M.
    Zain elabdeen A.G.
    Elnashar A.
    Zaki A.M.
    International Journal of Information Technology, 2024, 16 (6) : 3771 - 3779
  • [43] Automated Classification of Lung Injury from X-ray Images using Deep Learning Network
    Le, Huy
    Do, Thanh-Ha
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 2029 - 2034
  • [44] Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
    Ayan, Enes
    Karabulut, Bergen
    Unver, Halil Murat
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 2123 - 2139
  • [45] Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
    Enes Ayan
    Bergen Karabulut
    Halil Murat Ünver
    Arabian Journal for Science and Engineering, 2022, 47 : 2123 - 2139
  • [46] Deep Learning Approach for Automatic Classification of X-Ray Images using Convolutional Neural Network
    Mondal, Sushavan
    Agarwal, Krishna
    Rashid, Mamoon
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 326 - 331
  • [47] Eichner classification based on panoramic X-ray images using deep learning: A pilot study
    Otsuka, Yuta
    Indo, Hiroko
    Kawashima, Yusuke
    Tanaka, Tatsuro
    Kono, Hiroshi
    Kikuchi, Masafumi
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2024, 35 (04) : 377 - 386
  • [48] Modeling of deep learning enabled lung disease detection and classification on chest X-ray images
    Saturi, Swapna
    Banda, Sandhya
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2022,
  • [49] EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images
    Tang, Shanjiang
    Wang, Chunjiang
    Nie, Jiangtian
    Kumar, Neeraj
    Zhang, Yang
    Xiong, Zehui
    Barnawi, Ahmed
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6539 - 6549
  • [50] Stacked ensemble learning based on deep convolutional neural networks for pediatric pneumonia diagnosis using chest X-ray images
    J. Arun Prakash
    Vinayakumar Ravi
    V. Sowmya
    K. P. Soman
    Neural Computing and Applications, 2023, 35 : 8259 - 8279