On the Roots of σ-Polynomials

被引:0
作者
Brown, Jason [1 ]
Erey, Aysel [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
sigma-polynomial; real roots; chromatic number; chromatic polynomial; compatible polynomials; MINIMUM REAL ROOTS; ADJOINT POLYNOMIALS; CHROMATIC POLYNOMIALS; GRAPHS; COMPLEMENTS;
D O I
10.1002/jgt.21889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G of order n, the sigma-polynomial of G is the generating function sigma(G,x)=Sigma a(i)x(i) where ai is the number of partitions of the vertex set of G into i nonempty independent sets. Such polynomials arise in a natural way from chromatic polynomials. Brenti (Trans Am Math Soc 332 (1992), 729-756) proved that sigma-polynomials of graphs with chromatic number at least n-2 had all real roots, and conjectured the same held for chromatic number n-3. We affirm this conjecture.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 34 条
[31]  
2-C
[32]  
West DB., 2001, Introduction to Graph Theory
[33]   On the minimum real roots of the adjoint polynomial of a graph [J].
Zhao, Haixing ;
Liu, Ruying .
DISCRETE MATHEMATICS, 2009, 309 (13) :4635-4641
[34]   On the minimum real roots of the σ-polynomials and chromatic uniqueness of graphs [J].
Zhao, HX ;
Li, XL ;
Zhang, SG ;
Liu, RY .
DISCRETE MATHEMATICS, 2004, 281 (1-3) :277-294