On the Roots of σ-Polynomials

被引:0
作者
Brown, Jason [1 ]
Erey, Aysel [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
sigma-polynomial; real roots; chromatic number; chromatic polynomial; compatible polynomials; MINIMUM REAL ROOTS; ADJOINT POLYNOMIALS; CHROMATIC POLYNOMIALS; GRAPHS; COMPLEMENTS;
D O I
10.1002/jgt.21889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G of order n, the sigma-polynomial of G is the generating function sigma(G,x)=Sigma a(i)x(i) where ai is the number of partitions of the vertex set of G into i nonempty independent sets. Such polynomials arise in a natural way from chromatic polynomials. Brenti (Trans Am Math Soc 332 (1992), 729-756) proved that sigma-polynomials of graphs with chromatic number at least n-2 had all real roots, and conjectured the same held for chromatic number n-3. We affirm this conjecture.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 34 条
[1]  
[Anonymous], 1998, An Atlas of Graphs
[2]  
[Anonymous], DISCRETE STRUCTURES
[3]  
[Anonymous], SELECTED TOPICS GRAP
[4]  
[Anonymous], 1970, J COMB THEORY B
[5]   LOCATION OF ZEROS OF CHROMATIC AND RELATED POLYNOMIALS OF GRAPHS [J].
BRENTI, F ;
ROYLE, GF ;
WAGNER, DG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (01) :55-80
[6]   EXPANSIONS OF CHROMATIC POLYNOMIALS AND LOG-CONCAVITY [J].
BRENTI, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) :729-756
[7]   A note on the real part of complex chromatic roots [J].
Brown, Jason ;
Erey, Aysel .
DISCRETE MATHEMATICS, 2014, 328 :96-101
[8]  
Brown JI, 2002, ARS COMBINATORIA, V63, P211
[9]   The roots of the independence polynomial of a clawfree graph [J].
Chudnovsky, Maria ;
Seymour, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :350-357
[10]  
Comtet L., 1974, Advanced combinatorics