Ultrastable Sodium Storage in MoO3 Nanotube Arrays Enabled by Surface Phosphorylation

被引:28
作者
Jiang, Yu [1 ]
Sun, Menglei [1 ]
Ni, Jiangfeng [1 ]
Li, Liang [1 ]
机构
[1] Soochow Univ, CECMP, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdenum trioxide; Sodium-ion battery; Nanotube array; Surface phosphorylation; Electrochemical performance; HYDROGEN EVOLUTION; NANOPOROUS FILMS; ION; ENERGY; ELECTRODES; ALPHA-MOO3; NANOBELTS; CAPACITY; DENSITY; ANODES;
D O I
10.1021/acsami.9b12858
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molybdenum trioxide (MoO3) has been considered as an appealing choice of anode for sodium-ion batteries because of its high theoretical capacity (1117 mA h g(-1)). However, the large volume change upon Na+ storage results in poor cycling stability and capacity fade of MoO3. Here, we demonstrate a surface phosphorylation strategy to mitigate the degradation of three-dimensional MoO3 array electrodes. Such a phosphorylation strategy allows MoO3 arrays to sustain a capacity of 265 mA h g(-1), or similar to 90% of the initial value, at a rate of 2 A g(-1) over 1500 cycles, outperforming most reported MoO3 electrodes. Moreover, kinetic analysis unveils a capacitance-dominated Na+ storage feature of MoO3 arrays, owing to the enhanced electron mobility imparted by oxygen vacancies that are simultaneously introduced by phosphorylation. Hence, surface phosphorylation might offer new possibilities to bypass multiple materials challenges facing current sodium electrodes.
引用
收藏
页码:37761 / 37767
页数:7
相关论文
共 42 条
[1]   Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes [J].
Ahmed, B. ;
Shahid, Muhammad ;
Nagaraju, D. H. ;
Anjum, D. H. ;
Hedhili, Mohamed N. ;
Alshareef, H. N. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) :13154-13163
[2]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[3]   Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation [J].
Camacho-Lopez, M. A. ;
Escobar-Alarcon, L. ;
Picquart, M. ;
Arroyo, R. ;
Cordoba, G. ;
Haro-Poniatowski, E. .
OPTICAL MATERIALS, 2011, 33 (03) :480-484
[4]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[5]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[6]   Hydrogenation Driven Conductive Na2Ti3O7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries [J].
Fu, Shidong ;
Ni, Jiangfeng ;
Xu, Yong ;
Zhang, Qiao ;
Li, Liang .
NANO LETTERS, 2016, 16 (07) :4544-4551
[7]   α-MoO3: A high performance anode material for sodium-ion batteries [J].
Hariharan, Srirama ;
Saravanan, Kuppan ;
Balaya, Palani .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :5-9
[8]  
Hartmann P, 2013, NAT MATER, V12, P228, DOI [10.1038/NMAT3486, 10.1038/nmat3486]
[9]   Nanostructured Mo-based electrode materials for electrochemical energy storage [J].
Hu, Xianluo ;
Zhang, Wei ;
Liu, Xiaoxiao ;
Mei, Yueni ;
Huang, Yunhui .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (08) :2376-2404
[10]   Aligned MoOx/MoS2 Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes [J].
Jin, Bowen ;
Zhou, Xuemei ;
Huang, Li ;
Licklederer, Markus ;
Yang, Min ;
Schmuki, Patrik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (40) :12252-12256