Recurrence analysis of extreme event-like data

被引:15
作者
Banerjee, Abhirup [1 ,2 ]
Goswami, Bedartha [1 ,3 ]
Hirata, Yoshito [4 ]
Eroglu, Deniz [5 ]
Merz, Bruno [2 ,6 ]
Kurths, Juergen [1 ,7 ]
Marwan, Norbert [1 ,8 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, Leibniz Assoc, D-14412 Potsdam, Germany
[2] Univ Potsdam, Inst Environm Sci & Geog, D-14476 Potsdam, Germany
[3] Univ Tubingen, Cluster Excellence Machine Learning, D-72074 Tubingen, Germany
[4] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[5] Kadir Has Univ, Dept Bioinformat & Genet, TR-34083 Istanbul, Turkey
[6] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, Potsdam, Germany
[7] Humboldt Univ, Inst Phys, Berlin, Germany
[8] Univ Potsdam, Inst Geosci, D-14476 Potsdam, Germany
关键词
SPATIAL POINT-PROCESSES; TIME-SERIES; LYAPUNOV EXPONENTS; PRECIPITATION; MODELS;
D O I
10.5194/npg-28-213-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The identification of recurrences at various time-scales in extreme event-like time series is challenging because of the rare occurrence of events which are separated by large temporal gaps. Most of the existing time series analysis techniques cannot be used to analyze an extreme event-like time series in its unaltered form. The study of the system dynamics by reconstruction of the phase space using the standard delay embedding method is not directly applicable to event-like time series as it assumes a Euclidean notion of distance between states in the phase space. The edit distance method is a novel approach that uses the point-process nature of events. We propose a modification of edit distance to analyze the dynamics of extreme event-like time series by incorporating a nonlinear function which takes into account the sparse distribution of extreme events and utilizes the physical significance of their temporal pattern. We apply the modified edit distance method to event-like data generated from point process as well as flood event series constructed from discharge data of the Mississippi River in the USA and compute their recurrence plots. From the recurrence analysis, we are able to quantify the deterministic properties of extreme event-like data. We also show that there is a significant serial dependency in the flood time series by using the random shuffle surrogate method.
引用
收藏
页码:213 / 229
页数:17
相关论文
共 65 条
[1]  
[Anonymous], 2002, TINBERGEN I DISCUSSI
[2]  
[Anonymous], FOURIER ANAL TIME SE
[3]   Spatial point processes in astronomy [J].
Babu, GJ ;
Feigelson, ED .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) :311-326
[4]   ON THE SLIDING-WINDOW REPRESENTATION IN DIGITAL SIGNAL-PROCESSING [J].
BASTIAANS, MJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04) :868-873
[5]   Changing climate both increases and decreases European river floods [J].
Bloeschl, Guenter ;
Hall, Julia ;
Viglione, Alberto ;
Perdigao, Rui A. P. ;
Parajka, Juraj ;
Merz, Bruno ;
Lun, David ;
Arheimer, Berit ;
Aronica, Giuseppe T. ;
Bilibashi, Ardian ;
Bohac, Milon ;
Bonacci, Ognjen ;
Borga, Marco ;
Canjevac, Ivan ;
Castellarin, Attilio ;
Chirico, Giovanni B. ;
Claps, Pierluigi ;
Frolova, Natalia ;
Ganora, Daniele ;
Gorbachova, Liudmyla ;
Gul, Ali ;
Hannaford, Jamie ;
Harrigan, Shaun ;
Kireeva, Maria ;
Kiss, Andrea ;
Kjeldsen, Thomas R. ;
Kohnova, Silvia ;
Koskela, Jarkko J. ;
Ledvinka, Ondrej ;
Macdonald, Neil ;
Mavrova-Guirguinova, Maria ;
Mediero, Luis ;
Merz, Ralf ;
Molnar, Peter ;
Montanari, Alberto ;
Murphy, Conor ;
Osuch, Marzena ;
Ovcharuk, Valeryia ;
Radevski, Ivan ;
Salinas, Jose L. ;
Sauquet, Eric ;
Sraj, Mojca ;
Szolgay, Jan ;
Volpi, Elena ;
Wilson, Donna ;
Zaimi, Klodian ;
Zivkovic, Nenad .
NATURE, 2019, 573 (7772) :108-+
[6]   The South American rainfall dipole: A complex network analysis of extreme events [J].
Boers, Niklas ;
Rheinwalt, Aljoscha ;
Bookhagen, Bodo ;
Barbosa, Henrique M. J. ;
Marwan, Norbert ;
Marengo, Jose ;
Kurths, Juergen .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (20) :7397-7405
[7]   Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System [J].
Boers, Niklas ;
Bookhagen, Bodo ;
Marwan, Norbert ;
Kurths, Juergen ;
Marengo, Jose .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (16) :4386-4392
[8]   Nonlinear time-series analysis revisited [J].
Bradley, Elizabeth ;
Kantz, Holger .
CHAOS, 2015, 25 (09)
[9]   Complexity of seismic process; measuring and applications - A review [J].
Chelidze, T. ;
Matcharashvili, T. .
TECTONOPHYSICS, 2007, 431 (1-4) :49-60
[10]  
Coles G.S., 2001, An introduction to statistical modeling of extreme values, DOI DOI 10.1007/978-1-4471-3675-0