Mean width of random polytopes in a reasonably smooth convex body

被引:15
作者
Boeroeczky, K. J. [1 ,2 ]
Fodor, F. [3 ,4 ]
Reitzner, M. [5 ]
Vigh, V. [6 ]
机构
[1] Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Lorand Eotvos Univ, Dept Geometry, H-1117 Budapest, Hungary
[3] Univ Szeged, Dept Geometry, H-6720 Szeged, Hungary
[4] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[5] TU Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[6] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
Random polytope; Mean width; CENTRAL LIMIT-THEOREMS; BODIES; APPROXIMATION;
D O I
10.1016/j.jmva.2009.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let K be a convex body in R-d and let X-n = (x(1),..., x(n)) be a random sample of n independent points in K chosen according to the uniform distribution. The convex hull K-n of X-n is a random polytope in K, and we consider its mean width W (K-n). In this article, we assume that K has a rolling ball of radius Q > 0. First, we extend the asymptotic formula for the expectation of W (K) - W (K-n) which was earlier known only in the case when partial derivative K has positive Gaussian curvature. In addition, we determine the order of magnitude of the variance of W(K-n), and prove the strong law of large numbers for W(K-n). We note that the strong law of large numbers for any quermassintegral of K was only known earlier for the case when partial derivative K has positive Gaussian curvature. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2287 / 2295
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 2004, Handbook of Discrete and Computational Geometry, DOI [10.1201/9781420035315.ch36, DOI 10.1201/9781420035315.CH36]
[2]  
Artin E., 1964, GAMMA FUNCTION
[3]   RANDOM POLYTOPES IN A CONVEX POLYTOPE, INDEPENDENCE OF SHAPE, AND CONCENTRATION OF VERTICES [J].
BARANY, I ;
BUCHTA, C .
MATHEMATISCHE ANNALEN, 1993, 297 (03) :467-497
[4]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[5]   RANDOM POLYTOPES IN SMOOTH CONVEX-BODIES [J].
BARANY, I .
MATHEMATIKA, 1992, 39 (77) :81-92
[6]  
BARANY I, ANN PROB IN PRESS
[7]  
Bárány I, 2007, LECT NOTES MATH, V1892, P77
[8]  
Boroczky K, 2004, ANN APPL PROBAB, V14, P239
[9]   An identity relating moments of functionals of convex hulls [J].
Buchta, C .
DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (01) :125-142
[10]  
Gruber: P.M., 1997, Rend. Circ. Mat. Palermo, V50, P189