100Gb/s PAM-4 VCSEL Driver and TIA for Short Reach 400G-1.6T Optical Interconnects

被引:5
作者
Lu, Donglai [1 ,2 ]
He, Jian [1 ,4 ]
Li, Weizhong [5 ]
Chen, Sikai [1 ]
Liu, Jian [1 ,3 ]
Wu, Nanjian [1 ,2 ,3 ]
Yu, Ningmei [4 ]
Liu, Liyuan [1 ,2 ,3 ]
Chen, Yong [6 ]
Xiao, Xi [5 ]
Qi, Nan [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Microelect, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[4] Xian Univ Technol, Xian, Peoples R China
[5] Natl Informat Optoelect Innovat Ctr, Wuhan, Peoples R China
[6] Univ Macau, Macau, Peoples R China
来源
2021 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2021) & 2021 IEEE CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2021) | 2021年
基金
中国国家自然科学基金;
关键词
400GBASE-SR8; four-level pulse amplitude modulation (PAM-4); vertical-cavity-surface-emitting laser (VCSEL) driver; trans-impedance amplifier (TIA);
D O I
10.1109/APCCAS51387.2021.9687808
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a chipset of multi-channel vertical-cavity-surface-emitting laser (VCSEL) driver and trans-impedance amplifier (TIA) in a 180-nm SiGe BiCMOS. Targeting 400G-1.6T short-reach applications, the high-speed linear gain is developed for the four four-level pulse amplitude modulation (PAM-4). The VCSEL driver employs a second-order continuous-time linear equalizer to compensate for nonlinear input channel loss, while exploiting an RC-degenerated output stage with inductive shunt peaking to extend the bandwidth. The TIA adopts the resistive feedback topology along with a series-peaking inductor to improve its input bandwidth. Experimental results show the VCSEL driver operates up to 100 Gb/s with 280-mV(pp) PAM-4 modulated swing. The TIA achieves 61.5-dB Omega trans-impedance gain, 36-GHz BW, and 16-pA/root Hz averaged input-referred noise.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2020, IEEE Std 802.3cm-2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018, IEEE Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3cn-2019, IEEE Std 802.3cg-2019, P1
[2]  
[Anonymous], 2015, IEEE Std 80-2013 (Revision of IEEE Std 80-2000/ Incorporates IEEE Std 80-2013/Cor 1-2015), P1, DOI DOI 10.1109/IEEESTD.2015.7109078
[3]   A 50 Gb/s 190 mW Asymmetric 3-Tap FFE VCSEL Driver [J].
Belfiore, Guido ;
Khafaji, Mahdi ;
Henker, Ronny ;
Ellinger, Frank .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (09) :2422-2429
[4]  
Bhagavatheeswaran S., 2017, 2017 IEEE COMPOUND S, P1
[5]   An Area-Efficient and Tunable Bandwidth-Extension Technique for a Wideband CMOS Amplifier Handling 50+Gb/s Signaling [J].
Chen, Yong ;
Mak, Pui-In ;
Yu, Haohong ;
Boon, Chirn Chye ;
Martins, Rui P. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (12) :4960-4975
[6]   A 4 x 25 Gb/s Optical Transmitter Using Low-Cost 10 Gb/s VCSELs in 40-nm CMOS [J].
Hu, Shang ;
Bai, Rui ;
Wang, Xin ;
Peng, Yi ;
Wang, Juncheng ;
Xia, Tao ;
Ma, Jianxu ;
Wang, Lei ;
Zhang, Yuanxi ;
Chen, Xuefeng ;
Qi, Nan ;
Chiang, Patrick Yin .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (12) :967-970
[7]   A Low-Power 26-GHz Transformer-Based Regulated Cascode SiGe BiCMOS Transimpedance Amplifier [J].
Li, Cheng ;
Palermo, Samuel .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (05) :1264-1275
[8]  
Luo XL, 2015, I S INTELL SIG PROC, P312, DOI 10.1109/ISPACS.2015.7432787
[9]   40 Gb/s PAM-4 Transmitter IC for Long-Wavelength VCSEL Links [J].
Soenen, Wouter ;
Vaernewyck, Renato ;
Yin, Xin ;
Spiga, Silvia ;
Amann, Markus-Christian ;
Kaur, Kamalpreet S. ;
Bakopoulos, Paraskevas ;
Bauwelinck, Johan .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (04) :344-347
[10]   4x112 Gbps/Fiber CWDM VCSEL Arrays for Co-Packaged Interconnects [J].
Wang, Binhao ;
Sorin, Wayne V. ;
Rosenberg, Paul ;
Kiyama, Lennie ;
Mathai, Sagi ;
Tan, Michael R. T. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (13) :3439-3444