Toughness and Hamiltonicity of a class of planar graphs

被引:4
作者
Gerlach, T [1 ]
机构
[1] Tech Univ Ilmenau, Dept Math, D-98684 Ilmenau, Germany
关键词
Hamiltonian cycles; planar graph; chordal graph; toughness;
D O I
10.1016/j.disc.2003.11.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is called chordal if every cycle of G of length at least four has a chord. By a theorem of Bohme, Harant and Tkac more than 1-tough chordal planar graphs are Hamiltonian. We prove that this is even true for more than 1-tough planar graphs under the weaker assumption that separating cycles of length at least four have chords. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 14 条
[1]   Not every 2-tough graph is Hamiltonian [J].
Bauer, D ;
Broersma, HJ ;
Veldman, HJ .
DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) :317-321
[2]  
BERMOND JC, 1978, SELECTED TOPICS GRAP, P127
[3]  
Böhme T, 1999, J GRAPH THEOR, V32, P405
[4]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[5]  
DIESTEL R, 1997, GRAPH THEORY GRADUAT, V173, P61801
[6]   AN UPPER BOUND ON THE SHORTNESS EXPONENT OF 1-TOUGH, MAXIMAL PLANAR GRAPHS [J].
DILLENCOURT, MB .
DISCRETE MATHEMATICS, 1991, 90 (01) :93-97
[7]  
Dirac G. A., 1961, Abh. Math. Semin. Univ. Hambg, V25, P71, DOI [10.1007/BF02992776, DOI 10.1007/BF02992776]
[8]   TOUGHNESS AND THE EXISTENCE OF K-FACTORS [J].
ENOMOTO, H ;
JACKSON, B ;
KATERINIS, P ;
SAITO, A .
JOURNAL OF GRAPH THEORY, 1985, 9 (01) :87-95
[9]  
Grunbaum B., 1973, Journal of Combinatorial Theory, Series A, V14, P364, DOI 10.1016/0097-3165(73)90012-5
[10]   TOUGHNESS AND NONHAMILTONICITY OF POLYHEDRAL GRAPHS [J].
HARANT, J .
DISCRETE MATHEMATICS, 1993, 113 (1-3) :249-253