Schottky Gate Induced Threshold Voltage Instabilities in p-GaN Gate AlGaN/GaN HEMTs

被引:33
作者
Stockman, Arno [1 ,2 ]
Canato, Eleonora [3 ,4 ]
Meneghini, Matteo [3 ]
Meneghesso, Gaudenzio [3 ]
Moens, Peter [2 ]
Bakeroot, Benoit [1 ,5 ]
机构
[1] Univ Ghent, CMST, Ghent, Belgium
[2] ON Semicond, Corp R&D Dept, Oudenaarde, Belgium
[3] Univ Padua, Dept Informat Engn, I-35122 Padua, Italy
[4] ST Microelect, Digital & Smart Power Technol R&D Dept, I-20864 Agrate Brianza, Italy
[5] IMEC, Ghent, Belgium
关键词
Gallium nitride (GaN); enhancement mode (e-mode); high-electron-mobility transistor (HEMT); p-GaN gate; conduction mechanism; threshold voltage stability; technology computer-aided design (TCAD); SHIFT;
D O I
10.1109/TDMR.2021.3080585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present detailed ON-state gate current characterization of Schottky gate p-GaN capped AlGaN/GaN high-electron-mobility transistors (HEMTs) on two distinct gate processes. The threshold voltage is monitored from 10 mu s up to 100 s under positive gate bias stress and during recovery. The threshold voltage stability is affected by the balance between hole and electron current in the gate stack. More specifically, devices with uniform hole conduction across the p-GaN gate area demonstrate stable threshold voltage behavior up to V-g = 5V, whereas devices with a dominating gate perimeter electron conduction demonstrate larger instabilities. Finally, the threshold voltage stability during OFF-state pulsed stress is investigated and correlated to the excess gate-to-drain charge extracted from capacitance curves.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 24 条
[1]  
Bae J.-H, 2013, P IEEE INT EL DEV M, P787
[2]  
Bakeroot B, 2019, PROC INT SYMP POWER, P419, DOI [10.1109/ISPSD.2019.8757629, 10.1109/ispsd.2019.8757629]
[3]   Analytical Model for the Threshold Voltage of p-(Al) GaN High-Electron-Mobility Transistors [J].
Bakeroot, Benoit ;
Stockman, Arno ;
Posthuma, Niels ;
Stoffels, Steve ;
Decoutere, Stefaan .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (01) :79-86
[4]  
Canato E., 2019, PROC IEEE INT REL PH, P1, DOI DOI 10.1109/IRPS
[5]   GaN-on-Si Power Technology: Devices and Applications [J].
Chen, Kevin J. ;
Haeberlen, Oliver ;
Lidow, Alex ;
Tsai, Chun Lin ;
Ueda, Tetsuzo ;
Uemoto, Yasuhiro ;
Wu, Yifeng .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) :779-795
[6]   GaN Power Transistors on Si Substrates for Switching Applications [J].
Ikeda, Nariaki ;
Niiyama, Yuki ;
Kambayashi, Hiroshi ;
Sato, Yoshihiro ;
Nomura, Takehiko ;
Kato, Sadahiro ;
Yoshida, Seikoh .
PROCEEDINGS OF THE IEEE, 2010, 98 (07) :1151-1161
[7]   Low-Loss and High-Voltage III-Nitride Transistors for Power Switching Applications [J].
Kuzuhara, Masaaki ;
Tokuda, Hirokuni .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) :405-413
[8]   Charge trapping related channel modulation instability in P-GaN gate HEMTs [J].
Li, Xueyang ;
Xie, Gang ;
Tang, Cen ;
Sheng, Kuang .
MICROELECTRONICS RELIABILITY, 2016, 65 :35-40
[9]   Threshold Voltage Instability in p-GaN Gate AlGaN/GaN HFETs [J].
Sayadi, Luca ;
Iannaccone, Giuseppe ;
Sicre, Sebastien ;
Haeberlen, Oliver ;
Curatola, Gilberto .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) :2454-2460
[10]   Carrier Transport Mechanisms Underlying the Bidirectional VTH Shift in p-GaN Gate HEMTs Under Forward Gate Stress [J].
Shi, Yuanyuan ;
Zhou, Qi ;
Cheng, Qian ;
Wei, Pengcheng ;
Zhu, Liyang ;
Wei, Dong ;
Zhang, Anbang ;
Chen, Wanjun ;
Zhang, Bo .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (02) :876-882