Simply supported pre-stressed concrete box-girder bridges are the most common bridge type found on high-speed railway and urban rail transit lines in China. A field experiment has been conducted on the Pixian Viaduct of the Chengdu-Dujiangyan Intercity Railway, where two kinds of simply supported pre-stressed concrete box-girder bridges with a standard span of 32m are used, one single track and the other double track. Characteristics of the noise underneath the box-girder, far from the bridge, and near the bridge gap were measured and analyzed in the time and frequency domains during high-speed train passage, as was the vibration of the box-girder's bottom plate. The variations of noise with distance and train speed at locations 1.5 and 9m above ground level were measured and fitted using mathematical formulae. A simplified formula to predict near-field bridge-borne noise was proposed and verified. The peak bridge-borne noise frequency and its tonal characteristic at 50 and 63Hz for the double-track and single-track box-girders, respectively, were interpreted in terms of bridge vibration and sound radiation efficiency, respectively. The vibration/noise transfer function and coherence were evaluated, showing that vibration resonance is more significant than acoustic coincidence and that the former is more important in terms of noise reduction.