Orthogonal matchings

被引:11
作者
Anstee, RP
Caccetta, L
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6001, Australia
关键词
matching; orthogonal matching; transversal;
D O I
10.1016/S0012-365X(97)00025-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a graph G which is a union of m spanning subgraphs regular of degree k. We show that for k greater than or equal to 3 there is a matching of size m which uses exactly one edge from each subgraph. A problem of Alspach asks whether this is true for k=2. We find a matching of size m-m(2/3) (for large m) when k=2, using at most one edge from each subgraph and for k=1 we get a matching of size m-3/2m(2/3) (for large m). ,For subgraphs regular of degree I (i.e. perfect matchings) and G being the complete bipartite graph K-m,K-m,,, a matching with one edge from each factor corresponds to a transversal in a Latin square.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 6 条
[1]  
Alspach B., 1988, DISCRETE MATH, V69, P106
[2]  
Brouwer A.E., 1978, NIEUW ARCH WISKD, V26, P330
[3]  
Caccetta L., 1992, AUSTRALAS J COMB, V5, P229
[4]   ON THE EXISTENCE OF A MATCHING ORTHOGONAL TO A 2-FACTORIZATION [J].
KOUIDER, M ;
SOTTEAU, D .
DISCRETE MATHEMATICS, 1989, 73 (03) :301-304
[5]   A LOWER BOUND FOR THE LENGTH OF A PARTIAL TRANSVERSAL IN A LATIN SQUARE [J].
SHOR, PW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 33 (01) :1-8