Modeling approaches for precise relativistic orbits: Analytical, Lie-series, and pN approximation

被引:5
作者
Philipp, Dennis [1 ]
Woeske, Florian [1 ]
Biskupek, Liliane [2 ]
Hackmann, Eva [1 ]
Mai, Enrico [2 ]
List, Meike [1 ]
Lammerzahl, Claus [1 ]
Rievers, Benny [1 ]
机构
[1] Univ Bremen, ZARM, D-28359 Bremen, Germany
[2] Leibniz Univ Hannover, IfE, D-30167 Hannover, Germany
关键词
Relativistic geodesy; Post-Newtonian theory; Relativistic effects; Satellite orbits; Orbit propagation; GRAVITY-FIELD; EARTH; SIMULATION; EQUATIONS; MISSION; SYSTEM;
D O I
10.1016/j.asr.2018.05.020
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Accurate orbit modeling plays a key role in contemporary and future space missions such as GRACE and its successor GRACE-FO, GNSS, and altimetry missions. To fully exploit the technological capabilities and correctly interpret measurements, relativistic orbital effects need to be taken into account. Within the theory of General Relativity, equations of motion for freely falling test objects, such as satellites orbiting the Earth, are given by the geodesic equation. We analyze and compare different solution methods in a spherically symmetric background, i.e. for the Schwarzschild spacetime, as a test bed. We investigate satellite orbits and use direct numerical orbit integration as well as the semi-analytical Lie-series approach. The results are compared to the exact analytical reference solution in terms of elliptic functions. For a set of exemplary orbits, we determine the respective accuracy of the different methods. Within the post-Newtonian approximation of General Relativity, modified orbital equations are obtained by adding relativistic corrections to the Newtonian equations of motion. We analyze the accuracy of this approximation with respect to the general relativistic setting. Therefore, we solve the post-Newtonian equation of motion using the eXtended High Performance Satellite dynamics Simulator. For corresponding initial conditions, we compare orbits in the Schwarzschild spacetime to those in its post-Newtonian approximation. Moreover, we compare the magnitude of relativistic contributions to several typical perturbations of satellite orbits due to, e.g., solar radiation pressure, Earth's albedo, and atmospheric drag. This comparison is done for our test scenarios and for a real GRACE orbit to highlight the importance of relativistic effects in geodetic space missions. For the considered orbits, first-order relativistic contributions give accelerations of about 20 nm/s(2) and are dominant in the radial direction. (C) 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:921 / 934
页数:14
相关论文
共 44 条
[1]  
ARIAS EF, 1995, ASTRON ASTROPHYS, V303, P604
[2]  
Boucher C., 2000, TERRESTRIAL COORDINA, P1906, DOI [10.1888/0333750888/1906, DOI 10.1888/0333750888/1906]
[3]  
Bowman B.R., 2008, AIAAAAS ASTRODYNAMIC, P19, DOI [10.2514/6.2008-6438, DOI 10.2514/6.2008-6438]
[4]   POST-NEWTONIAN EQUATIONS OF HYDRODYNAMICS IN GENERAL RELATIVITY [J].
CHANDRASEKHAR, S .
ASTROPHYSICAL JOURNAL, 1965, 142 (04) :1488-+
[5]  
Cui C., 1997, DTSCH GEODAETISCHE K, P112
[6]   THE GRAVITY FIELD OF A PARTICLE [J].
DARWIN, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 249 (1257) :180-194
[8]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[9]   What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? [J].
Flechtner, Frank ;
Neumayer, Karl-Hans ;
Dahle, Christoph ;
Dobslaw, Henryk ;
Fagiolini, Elisa ;
Raimondo, Jean-Claude ;
Guentner, Andreas .
SURVEYS IN GEOPHYSICS, 2016, 37 (02) :453-470