Numerical Verification Method for Infinite Dimensional Eigenvalue Problems

被引:10
作者
Nagatou, Kaori [1 ,2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 812, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Tokyo, Japan
关键词
numerical verification method; infinite dimensional eigenvalue problem; error estimates; MULTIPLE-EIGENVALUES; ELLIPTIC-OPERATORS; COMPUTATIONS; UNIQUENESS; EQUATIONS; BOUNDS;
D O I
10.1007/BF03186545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an eigenvalue problem for differential operators, and show how guaranteed bounds for eigenvalues (together with eigenvectors) are obtained and how non-existence of eigenvalues in a concrete region can be assured. Some examples for several types of operators will be presented.
引用
收藏
页码:477 / 491
页数:15
相关论文
共 24 条
[1]   A PROCEDURE FOR ESTIMATING EIGENVALUES [J].
BAZLEY, NW ;
FOX, DW .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) :469-&
[2]  
BEATTIE JC, 1995, NUMER MATH, V72, P143
[3]  
BEHNKE H, 1994, STUDIES COMPUTATIONA
[4]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[5]  
Grisvard P, 1985, PITMAN MONOGRAPHS SU, V24
[6]   ON THE UPPER AND LOWER BOUNDS OF EIGENVALUES [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) :334-339
[7]  
Kriek M., 1990, FINITE ELEMENT APPRO
[8]   A computer-assisted proof on the stability of the Kolmogorov flows of incompressible viscous fluid [J].
Nagatou, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) :33-44
[9]   Verified numerical computations for eigenvalues of non-commutative harmonic oscillators [J].
Nagatou, K ;
Nakao, MT ;
Wakayama, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (5-6) :633-650
[10]   A numerical method to verify the elliptic eigenvalue problems including a uniqueness property [J].
Nagatou, K .
COMPUTING, 1999, 63 (02) :109-130