An overview of the variables selection methods for the minimum sum of absolute errors regression

被引:5
|
作者
André, CDS
Narula, SC
Elian, SN
Tavares, RA
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, Brazil
[2] Virginia Commonwealth Univ, Sch Business, Richmond, VA 23284 USA
[3] Banco Itau SA, BR-01014919 Sao Paulo, Brazil
关键词
implicit enumeration; forward selection; backward elimination; stepwise procedure; coefficient of determination; predictive sum of absolute errors;
D O I
10.1002/sim.1437
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The minimum sum of absolute errors regression is a robust alternative to the least squares regression whenever the errors follow a distribution for which the sample median is a more efficient estimator of location parameter than the sample mean, the errors follow a long tailed distribution, there are outliers in the values of the response variable in the data or the absolute error loss function is more appropriate than the quadratic loss function. Often an initial model may contain a large number of variables. However, in many situations, it is neither necessary nor important to include all the variables in the model. The methods for variable selection for the minimum sum of absolute errors regression are not as well documented and known as for the least squares regression. Our objective is to present an overview of the procedures to fit models with fewer variables and some criteria for selecting a model. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:2101 / 2111
页数:11
相关论文
共 50 条
  • [41] Discriminant analysis using the unweighted sum of binary variables: A comparison of model selection methods
    Langbehn, DR
    Woolson, RF
    STATISTICS IN MEDICINE, 1997, 16 (23) : 2679 - 2700
  • [42] Rectangular regression for an errors-in-variables model
    Ryu, HK
    ECONOMICS LETTERS, 2004, 83 (01) : 129 - 135
  • [43] Errors in variables regression with value censored data
    Hawkins, Douglas M.
    Weckwerth, Christina
    JOURNAL OF CHEMOMETRICS, 2016, 30 (06) : 332 - 335
  • [44] Errors-in-variables beta regression models
    Carrasco, Jalmar M. F.
    Ferrari, Silvia L. P.
    Arellano-Valle, Reinaldo B.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1530 - 1547
  • [45] Multiplicative errors-in-variables beta regression
    Carrasco, Jalmar M. F.
    Ferrari, Silvia L. P.
    Arellano-Valle, Reinaldo B.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (02) : 249 - 262
  • [46] ERRORS IN VARIABLES - A PROBLEM IN REGRESSION AND ITS SOLUTION
    THOMSON, KJ
    WILLIS, KG
    ENVIRONMENT AND PLANNING A, 1986, 18 (05) : 687 - 693
  • [47] Nonparametric regression with errors-in-all-variables
    Ioannides, D. A.
    Alevizos, P. D.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (6-8) : 231 - 240
  • [48] Errors-In-Variables regression and the problem of moments
    Al-Sharadqah, Ali
    Chernov, Nikolai
    Huang, Qizhuo
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2013, 27 (04) : 401 - 415
  • [49] Model checking in errors-in-variables regression
    Song, Weixing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2406 - 2443
  • [50] Adaptive wavelet multivariate regression with errors in variables
    Chichignoud, Michael
    Hoang, Van Ha
    Thanh Mai Pham Ngoc
    Rivoirard, Vincent
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 682 - 724