Experimental and kinetic modeling studies on the auto-ignition of methyl crotonate at high pressures and intermediate temperatures

被引:8
|
作者
Vallabhuni, S. K. [1 ]
Johnson, P. N. [2 ]
Shu, B. [1 ]
Narayanaswamy, K. [2 ]
Fernandes, R. X. [1 ]
机构
[1] Phys Tech Bundesanstalt PTB, Dept Phys Chem, Braunschweig, Germany
[2] Indian Inst Technol Madras, Dept Mech Engn, Chennai, Tamil Nadu, India
关键词
Methyl crotonate; Rcm; Auto-ignition delays; Chemical kinetics; Modeling; COMBUSTION; OXIDATION; BUTANOATE; ESTERS; AUTOIGNITION; ISOMERS; FLAME;
D O I
10.1016/j.proci.2020.06.083
中图分类号
O414.1 [热力学];
学科分类号
摘要
Biofuels, including biodiesel have the potential to partially replace the conventional diesel fuels for low temperature combustion engine applications to reduce the CO2 emission. Due to the long chain lengths and high molecular weights of the biodiesel components, it is quite challenging to study the biodiesel combustion experimentally and computationally. Methyl crotonate, a short unsaturated fatty acid methyl ester (FAME) is chosen for this chemical kinetic study as it is considered as a model biodiesel fuel. Auto-ignition experiments were performed in a rapid compression machine (RCM) at pressures of 20 and 40 bar under diluted conditions over a temperature range between 900 and 1074 K, and at different equivalence ratios (phi = 0.25, 0.5 and 1.0). A chemical kinetic mechanism is chosen from literature (Gail et al. 2008) and is modified to incorporate the low-temperature pathways. The mechanism is validated against existing shock tube data (Bennadji et al. 2009) and the present RCM data. The updated mechanism shows satisfactory agreement with the experimental data with significant improvements in low-temperature ignition behavior. The key reactions at various combustion conditions and the improved reactivity of the modified mechanism are analyzed by performing sensitivity and path flux analysis. This study depicts the importance of low-temperature pathways in predicting the ignition behavior of methyl crotonate at intermediate and low temperatures. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [1] Experimental and kinetic modeling study on auto-ignition properties of ammonia/ethanol blends at intermediate temperatures and high pressures
    Li, Mengdi
    Zhu, Denghao
    He, Xiaoyu
    Moshammer, Kai
    Fernandes, Ravi
    Shu, Bo
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (01) : 511 - 519
  • [2] Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures
    He, X.
    Shu, B.
    Nascimento, D.
    Moshammer, K.
    Costa, M.
    Fernandes, R. X.
    COMBUSTION AND FLAME, 2019, 206 : 189 - 200
  • [3] Experimental and kinetic modeling study on auto-ignition of ammonia/ n-heptane mixtures at intermediate temperatures
    Fang, Yuan
    Qu, Wenjing
    Feng, Liyan
    COMBUSTION AND FLAME, 2024, 265
  • [4] Experimental and modeling study on the auto-ignition properties of ammonia/methane mixtures at elevated pressures
    Shu, B.
    He, X.
    Ramos, C. F.
    Fernandes, R. X.
    Costa, M.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (01) : 261 - 268
  • [5] An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure
    Li, Mengdi
    He, Xiaoyu
    Hashemi, Hamid
    Glarborg, Peter
    Lowe, Vincent M.
    Marshall, Paul
    Fernandes, Ravi
    Shu, Bo
    COMBUSTION AND FLAME, 2022, 242
  • [6] Experimental and kinetic modelling studies on di-n-butyl ether (DBE) low temperature auto-ignition
    Zhong, Anhao
    Han, Dong
    COMBUSTION AND FLAME, 2022, 237
  • [7] Experimental and numerical investigation of vitiation effects on the auto-ignition of n-heptane at high temperatures
    Zhang, Dexiang
    Wang, Yijun
    Zhang, Changhua
    Li, Ping
    Li, Xiangyuan
    ENERGY, 2019, 174 : 922 - 931
  • [8] Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
    Askari, Omid
    Elia, Mimmo
    Ferrari, Matthew
    Metghalchi, Hameed
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2017, 139 (01):
  • [9] Exploring intermediate temperature reactivity: Experimental and kinetic modeling insights into 50/50% blend of methyl butanoate and methyl crotonate
    Attarde, Lalit Y.
    Johnson, Praise Noah
    Vallabhuni, Sonal Kumar
    Fernandes, R. X.
    Narayanaswamy, Krithika
    FUEL, 2024, 377
  • [10] Experiments and modeling of the autoignition of methyl pentanoate at low to intermediate temperatures and elevated pressures in a rapid compression machine
    Weber, Bryan W.
    Bunnell, Justin A.
    Kumar, Kamal
    Sung, Chih-Jen
    FUEL, 2018, 212 : 479 - 486