Automatic Detection and Classification of Radio Galaxy Images by Deep Learning

被引:6
|
作者
Zhang, Zhen [1 ]
Jiang, Bin [1 ]
Zhang, Yanxia [2 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Shandong, Peoples R China
[2] Natl Astron Observ, CAS Key Lab Opt Astron, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORKS; 1ST CATALOG; COMPACT; SKY;
D O I
10.1088/1538-3873/ac67b1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Surveys conducted by radio astronomy observatories, such as SKA, MeerKAT, Very Large Array, and ASKAP, have generated massive astronomical images containing radio galaxies (RGs). This generation of massive RG images has imposed strict requirements on the detection and classification of RGs and makes manual classification and detection increasingly difficult, even impossible. Rapid classification and detection of images of different types of RGs help astronomers make full use of the observed astronomical image data for further processing and analysis. The classification of FRI and FRII is relatively easy, and there are more studies and literature on them at present, but FR0 and FRI are similar, so it is difficult to distinguish them. It poses a greater challenge to image processing. At present, deep learning has made breakthrough progress in the field of image analysis and processing and has preliminary applications in astronomical data processing. Compared with classification algorithms that can only classify galaxies, object detection algorithms that can locate and classify RGs simultaneously are preferred. In target detection algorithms, YOLOv5 has outstanding advantages in the classification and positioning of small targets. Therefore, we propose a deep-learning method based on an improved YOLOv5 object detection model that makes full use of multisource data, combining FIRST radio with SDSS optical image data, and realizes the automatic detection of FR0, FRI, and FRII RGs. The innovation of our work is that on the basis of the original YOLOv5 object detection model, we introduce the SE Net attention mechanism, increase the number of preset anchors, adjust the network structure of the feature pyramid, and modify the network structure, thereby allowing our model to demonstrate galaxy classification and position detection effects. Our improved model produces satisfactory results, as evidenced by experiments. Overall, the mean average precision (mAP@0.5) of our improved model on the test set reaches 89.4%, which can determine the position (R.A. and decl.) and automatically detect and classify FR0s, FRIs, and FRIIs. Our work contributes to astronomy because it allows astronomers to locate FR0, FRI, and FRII galaxies in a relatively short time and can be further combined with other astronomically generated data to study the properties of these galaxies. The target detection model can also help astronomers find FR0s, FRIs, and FRIIs in future surveys and build a large-scale star RG catalog. Moreover, our work is also useful for the detection of other types of galaxies.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images
    Patel, Krishna
    Bhatt, Chintan
    Mazzeo, Pier Luigi
    JOURNAL OF IMAGING, 2022, 8 (07)
  • [22] A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images
    Mylonas, Adam
    Keall, Paul J.
    Booth, Jeremy T.
    Shieh, Chun-Chien
    Eade, Thomas
    Poulsen, Per Rugaard
    Doan Trang Nguyen
    MEDICAL PHYSICS, 2019, 46 (05) : 2286 - 2297
  • [23] Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    IEEE ACCESS, 2020, 8 : 151133 - 151149
  • [24] Automatic Fish Classification System Using Deep Learning
    Chen, Guang
    Sun, Peng
    Shang, Yi
    2017 IEEE 29TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2017), 2017, : 24 - 29
  • [25] Deep Learning Approach for Automatic Microaneurysms Detection
    Mateen, Muhammad
    Malik, Tauqeer Safdar
    Hayat, Shaukat
    Hameed, Musab
    Sun, Song
    Wen, Junhao
    SENSORS, 2022, 22 (02)
  • [26] An Interpretable Deep Learning Model for Automatic Sound Classification
    Zinemanas, Pablo
    Rocamora, Martin
    Miron, Marius
    Font, Frederic
    Serra, Xavier
    ELECTRONICS, 2021, 10 (07)
  • [27] Deep Learning Neural Network for Unconventional Images Classification
    Xu, Wei
    Parvin, Hamid
    Izadparast, Hadi
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 169 - 185
  • [28] Deep Learning Neural Network for Unconventional Images Classification
    Wei Xu
    Hamid Parvin
    Hadi Izadparast
    Neural Processing Letters, 2020, 52 : 169 - 185
  • [29] DeepAdversaries: examining the robustness of deep learning models for galaxy morphology classification
    Ciprijanovic, Aleksandra
    Kafkes, Diana
    Snyder, Gregory
    Sanchez, F. Javier
    Perdue, Gabriel Nathan
    Pedro, Kevin
    Nord, Brian
    Madireddy, Sandeep
    Wild, Stefan M.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (03):
  • [30] Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
    Simic, Svetlana
    Simic, Svetislav D.
    Bankovic, Zorana
    Ivkov-Simic, Milana
    Villar, Jose R.
    Simic, Dragan
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (04) : 649 - 663