Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator

被引:20
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Holling type-II functional response; Steady state; Global attractivity; POSITIVE SOLUTIONS; SPATIOTEMPORAL PATTERNS; PARABOLIC-SYSTEMS; MODEL; BIFURCATION;
D O I
10.1016/j.jde.2016.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a diffusive predator prey system with Honing type-II functional response and a nonlinear growth rate for the predator. Our results include the global attractivity of constant equilibria and non-existence of non-constant positive steady states. These results give some ranges for the model parameters within which, spatiotemporal pattern formation is impossible. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:7923 / 7939
页数:17
相关论文
共 26 条
[1]   The generalized Beverton-Holt equation and the control of populations [J].
De la Sen, M. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (11) :2312-2328
[2]   Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases [J].
De la Sen, M. ;
Alonso-Quesada, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) :2616-2633
[3]   A diffusive predator-prey model in heterogeneous environment [J].
Du, YH ;
Hsu, SB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (02) :331-364
[4]   S-Shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model [J].
Du, YH ;
Lou, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 144 (02) :390-440
[5]   Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation [J].
Du, YH ;
Lou, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :321-349
[6]  
Freedman HI., 1980, DETERMINISTIC MATH M
[7]   The effect of mutual interference between predators on a predator-prey model with diffusion [J].
Guo, Gaihui ;
Wu, Jianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) :179-194
[8]  
Holling C. S., 1959, Canadian Entomologist, V91, P385
[9]   Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge [J].
Ko, Wonlyul ;
Ryu, Kimun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) :534-550
[10]   LARGE-AMPLITUDE STATIONARY SOLUTIONS TO A CHEMOTAXIS SYSTEM [J].
LIN, CS ;
NI, WM ;
TAKAGI, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (01) :1-27