Continua on which all real-valued connected functions are connectivity functions

被引:0
作者
Nadler, SB [1 ]
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
来源
TOPOLOGY PROCEEDINGS, VOL 28, NO 1, 2004 | 2004年 / 28卷 / 01期
关键词
almost continuous; connected function; connectivity function; continuum; Darboux function; dendrite; Peano continuum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the continua on which every connected real-valued function is a connectivity function, as well as the continua on which every connected real-valued function is a Darboux function, are precisely the dendrites X each of whose arcs contains only finitely many branch points of X.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 10 条
[1]  
[Anonymous], FUND MATH
[2]   ALMOST CONTINUITY OF CESARO-VIETORIS FUNCTION [J].
BROWN, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) :185-188
[3]  
Bruckner A. M., 1964, Jber. Deutsch. Math.-Verein., V67, P93
[4]  
Cornette JL, 1966, FUND MATH, V58, P183, DOI [DOI 10.4064/FM-58-2-183-192, 10.4064/fm-58-2-183-192]
[5]  
GARRETT BD, 1988, REAL ANAL EXCHANGE, V14, P440
[6]  
Knaster B., 1925, REND CIRC MAT PALERM, V49, P382
[7]  
KRUATOWSKI K, 1966, TOPOLOGY, V1
[8]  
Nadler S. B., 1992, Continuum Theory: An Introduction, V158
[9]  
Natkaniec T., 1991, REAL ANAL EXCH, V17, P462
[10]  
Stallings J., 1959, Fund. Math., V47, P249