Nonlocal problems at nearly critical growth

被引:65
作者
Mosconi, Sunra [1 ]
Squassina, Marco [1 ]
机构
[1] Univ Verona, Dipartimento Informat, Ca Vignal 2,Str Grazie 15, I-37134 Verona, Italy
关键词
Nonlinear nonlocal equation; Critical embedding; Nearly critical nonlinearities; CRITICAL SOBOLEV EXPONENT; ELLIPTIC PROBLEMS; INEQUALITIES; EXTREMALS; EQUATIONS;
D O I
10.1016/j.na.2016.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of solutions to the nonlocal nonlinear equation (-Delta(p))(s)u = vertical bar u vertical bar(q-2)u in a bounded domain Omega subset of R-N as q approaches the critical Sobolev exponent p* = Np/(N - ps). We prove that ground state solutions concentrate at a single point (x) over bar epsilon (Omega) over bar and analyze the asymptotic behavior for sequences of solutions at higher energy levels. In the semi-linear case p = 2, we prove that for smooth domains the concentration point (x) over bar cannot lie on the boundary, and identify its location in the case of annular domains. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 101
页数:18
相关论文
共 27 条
[1]  
Atkinson F., 1986, J DIFFER EQUATIONS, V70, P349
[2]   ON LIMITS OF SOLUTIONS OF ELLIPTIC PROBLEMS WITH NEARLY CRITICAL EXPONENT [J].
AZORERO, JG ;
ALONSO, IP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (11-12) :2113-2126
[3]  
Barrios B., J ANAL MATH IN PRESS
[4]  
Brasco L., PREPRINT
[5]   Optimal decay of extremals for the fractional Sobolev inequality [J].
Brasco, Lorenzo ;
Mosconi, Sunra ;
Squassina, Marco .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02) :1-32
[6]   CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :769-799
[7]  
Brezis H., 1989, Progr. Nonlinear Differential Equations Appl., V1, P149
[8]  
Carlier G., ADV CALC VA IN PRESS
[9]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[10]   Nonlocal Harnack inequalities [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) :1807-1836