Yolk-Shell Pt-NiCe@SiO2 Single-Atom-Alloy Catalysts for Low-Temperature Dry Reforming of Methane

被引:95
作者
Kim, Sunkyu [1 ]
Lauterbach, Jochen [2 ]
Sasmaz, Erdem [1 ]
机构
[1] Univ Calif Irvine, Dept Chem & Biomol Engn, Irvine, CA 92697 USA
[2] Univ South Carolina, Dept Chem Engn, Smartstate Ctr Strateg Approaches Generat Elect S, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
single-atom alloy; yolk-shell; dry reforming of methane; syngas; catalyst; PARTIAL OXIDATION; OXYGEN REDUCTION; COKE RESISTANCE; NI; CO2; SIZE; NANOSTRUCTURES; PERFORMANCE; SELECTIVITY; ACTIVATION;
D O I
10.1021/acscatal.1c01223
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report a highly carbon resistant nanotubular yolk-shell Pt-NiCe@SiO2 single-atom-alloy (SAA) catalyst for low-temperature dry reforming of methane (DRM). A synergetic combination of the confined yolk-shell morphology and Pt-Ni SAA structures prevents carbon formation and provides excellent catalyst stability. The confined morphology of the yolk-shell structures can impede carbon deposition due to the facile CO desorption from the surface. Carbon formation can be further minimized by 0.25 wt % Pt promotion, showing an excellent stability for 120 h during DRM at 500 degrees C. The enhanced stability of the Pe(0.25)-NiCe@SiO2 catalyst can be attributed to the atomically dispersed Pt on the yolks forming Pt-Ni SAA structures encapsulated by a nanotubular SiO2 shell. The Pt-Ni SAA facilitates Pt-Ni interactions and enhances the reducibility of the Ni species, which further suppresses carbon formation during DRM. The developed bifunctional catalyst exhibits excellent resistance to coking by decreasing the effect of both main carbon formation reactions: i.e., CO disproportionation and CH4 decomposition. When the Pt loading is increased above 0.25 wt %, Pt nanoparticles form, leading to oligomerization of C-H species. Our results show that advantageous effects of both confined morphology and Pt-Ni SAA structures can lower the operating temperature of DRM without showing any catalyst deactivation.
引用
收藏
页码:8247 / 8260
页数:14
相关论文
共 73 条
[1]   Pt/CeO2 catalysts in crotonaldehyde hydrogenation:: Selectivity, metal particle size and SMSI states [J].
Abid, M ;
Paul-Boncour, V ;
Touroude, R .
APPLIED CATALYSIS A-GENERAL, 2006, 297 (01) :48-59
[2]   Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations [J].
Ahmadi, M. ;
Timoshenko, J. ;
Behafarid, F. ;
Roldan Cuenya, Beatriz .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16) :10666-10676
[3]   Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J].
Akri, Mohcin ;
Zhao, Shu ;
Li, Xiaoyu ;
Zang, Ketao ;
Lee, Adam F. ;
Isaacs, Mark A. ;
Xi, Wei ;
Gangarajula, Yuvaraj ;
Luo, Jun ;
Ren, Yujing ;
Cui, Yi-Tao ;
Li, Lei ;
Su, Yang ;
Pan, Xiaoli ;
Wen, Wu ;
Pan, Yang ;
Wilson, Karen ;
Li, Lin ;
Qiao, Botao ;
Ishii, Hirofumi ;
Liao, Yen-Fa ;
Wang, Aiqin ;
Wang, Xiaodong ;
Zhang, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Methane dry reforming on supported cobalt nanoparticles promoted by boron [J].
Al Abdulghani, Abdullah J. ;
Park, Jung-Hyun ;
Kozlov, Sergey M. ;
Kang, Dong-Chang ;
AlSabban, Bedour ;
Pedireddy, Srikanth ;
Aguilar-Tapia, Antonio ;
Ould-Chikh, Samy ;
Hazemann, Jean-Louis ;
Basset, Jean-Marie ;
Cavallo, Luigi ;
Takanabe, Kazuhiro .
JOURNAL OF CATALYSIS, 2020, 392 :126-134
[5]   Dry reforming of methane over Pt-Ni/CeO2 catalysts: Effect of the metal composition on the stability [J].
Araiza, Daniel G. ;
Arcos, Diana G. ;
Gomez-Cortes, Antonio ;
Diaz, Gabriela .
CATALYSIS TODAY, 2021, 360 :46-54
[6]   An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts [J].
Arora, Shalini ;
Prasad, R. .
RSC ADVANCES, 2016, 6 (110) :108668-108688
[7]   H2S and NOx tolerance capability of CeO2 doped La1-xCexCo0.5Ti0.5O3-δ perovskites for steam reforming of biomass tar model reaction [J].
Ashok, J. ;
Das, S. ;
Dewangan, N. ;
Kawi, S. .
ENERGY CONVERSION AND MANAGEMENT-X, 2019, 1
[8]   Syngas production from CO2 reforming of methane over ceria supported cobalt catalyst: Effects of reactants partial pressure [J].
Ayodele, Bamidele V. ;
Khan, Maksudur R. ;
Cheng, Chin Kui .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 27 :1016-1023
[9]   In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions [J].
Beheshti-Askari, Abbas ;
al Samarai, Mustafa ;
Morana, Bruno ;
Tillmann, Lukas ;
Pfaender, Norbert ;
Wandzilak, Aleksandra ;
Watts, Benjamin ;
Belkhou, Rachid ;
Muhler, Martin ;
DeBeer, Serena .
ACS CATALYSIS, 2020, 10 (11) :6223-6230
[10]   Sandwich-Like Silica@Ni@Silica Multicore-Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation [J].
Bian, Zhoufeng ;
Kawi, Sibudjing .
CHEMCATCHEM, 2018, 10 (01) :320-328