The local projection in the density functional theory plus U approach: A critical assessment

被引:32
|
作者
Wang, Yue-Chao [1 ]
Chen, Ze-Hua [1 ]
Jiang, Hong [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 14期
基金
中国国家自然科学基金;
关键词
STRONGLY CORRELATED SYSTEMS; ELECTRONIC-STRUCTURE; LDA+U METHOD; BAND THEORY; SPECTRA; IMPLEMENTATION; TRANSITION; STATES;
D O I
10.1063/1.4945608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density-functional theory plus the Hubbard U correction (DFT+U) method is widely used in first-principles studies of strongly correlated systems, as it can give qualitatively (and sometimes, semi-quantitatively) correct description of energetic and structural properties of many strongly correlated systems with similar computational cost as local density approximation or generalized gradient approximation. On the other hand, the DFT+U approach is limited both theoretically and practically in several important aspects. In particular, the results of DFT+U often depend on the choice of local orbitals (the local projection) defining the subspace in which the Hubbard U correction is applied. In this work we have systematically investigated the issue of the local projection by considering typical transition metal oxides, beta-MnO2 and MnO, and comparing the results obtained from different implementations of DFT+U. We found that the choice of the local projection has significant effects on the DFT+U results, which are more significant for systems with stronger covalent bonding (e.g., MnO2) than those with more ionic bonding (e.g., MnO). These findings can help to clarify some confusion arising from the practical use of DFT+U and may also provide insights for the development of new first-principles approaches beyond DFT+U. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Constricted Variational Density Functional Theory Approach to the Description of Excited States
    Ziegler, Tom
    Krykunov, Mykhaylo
    Seidu, Issaka
    Park, Young Choon
    DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES, 2016, 368 : 61 - 95
  • [42] Adsorption and dissociation behavior of H2 on PuH2 (100), (110) and (111) surfaces: a density functional theory plus U study
    Luo, Wenhua
    Wan, Lei
    Li, Gan
    Gao, Tao
    RSC ADVANCES, 2020, 10 (33) : 19576 - 19586
  • [43] Density functional theory meta-GGA plus U study of water incorporation in the metal-organic framework material Cu-BTC
    Cockayne, Eric
    Nelson, Eric B.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (02):
  • [44] Charge density functional plus U calculation of lacunar spinel GaM4Se (M = Nb, Mo, Ta, and W)
    Lee, Hyunggeun
    Jeong, Min Yong
    Sim, Jae-Hook
    Yoon, Hongkee
    Ryee, Siheon
    Han, Myung Joon
    EPL, 2019, 125 (04)
  • [45] Exchange parameters of strongly correlated materials: Extraction from spin-polarized density functional theory plus dynamical mean-field theory
    Kvashnin, Y. O.
    Granaes, O.
    Di Marco, I.
    Katsnelson, M. I.
    Lichtenstein, A. I.
    Eriksson, O.
    PHYSICAL REVIEW B, 2015, 91 (12)
  • [46] Spin-density functional theories and their plus U and plus J extensions: A comparative study of transition metals and transition metal oxides
    Chen, Hanghui
    Millis, Andrew J.
    PHYSICAL REVIEW B, 2016, 93 (04)
  • [47] DFTB plus , a software package for efficient approximate density functional theory based atomistic simulations
    Hourahine, B.
    Aradi, B.
    Blum, V.
    Bonafe, F.
    Buccheri, A.
    Camacho, C.
    Cevallos, C.
    Deshaye, M. Y.
    Dumitrica, T.
    Dominguez, A.
    Ehlert, S.
    Elstner, M.
    van der Heide, T.
    Hermann, J.
    Irle, S.
    Kranz, J. J.
    Koehler, C.
    Kowalczyk, T.
    Kubar, T.
    Lee, I. S.
    Lutsker, V.
    Maurer, R. J.
    Min, S. K.
    Mitchell, I.
    Negre, C.
    Niehaus, T. A.
    Niklasson, A. M. N.
    Page, A. J.
    Pecchia, A.
    Penazzi, G.
    Persson, M. P.
    Rezac, J.
    Sanchez, C. G.
    Sternberg, M.
    Stoehr, M.
    Stuckenberg, F.
    Tkatchenko, A.
    Yu, V. W. -z.
    Frauenheim, T.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (12):
  • [48] Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA) plus U methods
    Jafarova, V. N.
    Orudzhev, G. S.
    SOLID STATE COMMUNICATIONS, 2021, 325
  • [49] Nonadiabatic electron dynamics in time-dependent density functional theory at the cost of adiabatic local density approximation
    Gulevich, D. R.
    Zhumagulov, Ya, V
    Vagov, A.
    Perebeinos, V
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [50] Fragment approach to constrained density functional theory calculations using Daubechies wavelets
    Ratcliff, Laura E.
    Genovese, Luigi
    Mohr, Stephan
    Deutsch, Thierry
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (23):