Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

被引:9
作者
Javed, Saira [1 ,2 ]
Viswanathan, K. K. [1 ,2 ]
Aziz, Z. A. [1 ,2 ]
Lee, J. H. [3 ]
机构
[1] Univ Teknol Malaysia, Ibnu SIna Inst Sci & Ind Res, UTM Ctr Ind & Appl Math UTM CIAM, Johor Baharu 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[3] Inha Univ, Dept Naval Architecture & Oceon Engn, Div Mech Engn, Inchon 22212, South Korea
关键词
vibration; anti-symmetric; conical shell; splines; thickness variation; BOUNDARY-CONDITIONS; VARIABLE THICKNESS; CYLINDRICAL-SHELLS; COMPOSITE; DEFORMATION; FREQUENCIES; PLATES; PRESSURE; ELEMENT;
D O I
10.12989/sem.2016.58.6.1001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.
引用
收藏
页码:1001 / 1020
页数:20
相关论文
共 33 条
[1]   Free vibration of FGM Levy conical panels [J].
Akbari, M. ;
Kiani, Y. ;
Aghdam, M. M. ;
Eslami, M. R. .
COMPOSITE STRUCTURES, 2014, 116 :732-746
[2]   Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method [J].
Alibeigloo, A. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2009, 86 (11) :738-747
[3]   A novel variational numerical method for analyzing the free vibration of composite conical shells [J].
Ansari, R. ;
Shojaei, M. Faghih ;
Rouhi, H. ;
Hosseinzadeh, M. .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) :2849-2860
[4]   Free linear vibrations of thin axisymmetric parabolic shells [J].
Chernobryvko, M. V. ;
Avramov, K. V. ;
Romanenko, V. N. ;
Batutina, T. J. ;
Tonkonogenko, A. M. .
MECCANICA, 2014, 49 (12) :2839-2845
[5]   Natural frequencies of delaminated composite rotating conical shells-A finite element approach [J].
Dey, Sudip ;
Karmakar, Amit .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 56 :41-51
[6]   Free Vibration of Moderately Thick Conical Shells Using a Higher Order Shear Deformable Theory [J].
Firouz-Abadi, R. D. ;
Rahmanian, M. ;
Amabili, M. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (05)
[7]  
George H.S., 1999, LAMINAR COMPOSITES
[8]  
Gibson R.F., 1994, PRINCIPLES COMPOSITE
[9]   A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions [J].
Jin, Guoyong ;
Ma, Xianglong ;
Shi, Shuangxia ;
Ye, Tiangui ;
Liu, Zhigang .
APPLIED ACOUSTICS, 2014, 85 :82-96
[10]   Vibration Analysis of Complete Conical Shells with Variable Thickness [J].
Kang, Jae-Hoon .
INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2014, 14 (04)