MSLAN: A Two-Branch Multidirectional Spectral-Spatial LSTM Attention Network for Hyperspectral Image Classification

被引:28
|
作者
Song, Tiecheng [1 ,2 ]
Wang, Yuanlin [1 ,2 ]
Gao, Chenqiang [1 ,2 ]
Chen, Haonan [3 ]
Li, Jun [4 ,5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc, Chongqing 400065, Peoples R China
[3] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[4] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
[5] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430078, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Hyperspectral imaging; Logic gates; Recurrent neural networks; Principal component analysis; Convolutional neural networks; Attention; deep learning; hyperspectral image (HSI) classification; long short-term memory (LSTM); recurrent neural network (RNN); spectral-spatial feature; FEATURE-EXTRACTION; NEURAL-NETWORKS;
D O I
10.1109/TGRS.2022.3176216
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recurrent neural networks (RNNs) have been widely used for hyperspectral image (HSI) classification via sequence modeling. However, most of the RNN methods focus on modeling long-range dependencies along the spectral direction without fully exploring multidirectional dependencies in the joint spectral-spatial domain. To tackle this issue, we propose MSLAN, a two-branch multidirectional spectral-spatial long short-term memory (LSTM) attention network, for HSI classification. In particular, we employ LSTMs to extract six-directional spatial-spectral features that simultaneously capture the spectral-spatial dependencies along with different directions. We then design an attention-based feature fuse module to integrate these directional features, followed by a fully connected layer with cross-entropy loss for classification. In addition, we incorporate an auxiliary branch into our model to enhance the generalization capability. In this branch, random spatial shuffle and a cosine loss are explored for feature consistency learning by taking into account the varying spatial distributions. The resulting two branch networks, sharing the same network structure and weights, are incorporated into a unified deep learning architecture for training. Experiments show the superiority of MSLAN to the state-of-the-art methods for HSI classification with limited training samples.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Based on Two-Branch Spectral-Spatial-Feature Attention Network
    Wu, Hanjie
    Li, Dan
    Wang, Yujian
    Li, Xiaojun
    Kong, Fanqiang
    Wang, Qiang
    REMOTE SENSING, 2021, 13 (21)
  • [2] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [3] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [4] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [5] Lightweight Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Cui, Ying
    Xia, Jinbiao
    Wang, Zhiteng
    Gao, Shan
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Expansion Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Wang, Shuo
    Liu, Zhengjun
    Chen, Yiming
    Hou, Chengchao
    Liu, Aixia
    Zhang, Zhenbei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6411 - 6427
  • [7] SPECTRAL-SPATIAL FUSED ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Ningyang
    Wang, Zhaohui
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3832 - 3836
  • [8] Multiscale Dual-Branch Residual Spectral-Spatial Network With Attention for Hyperspectral Image Classification
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5455 - 5467
  • [9] Two-branch global spatial-spectral fusion transformer network for hyperspectral image classification
    Xie, Erxin
    Chen, Na
    Zhang, Genwei
    Peng, Jiangtao
    Sun, Weiwei
    PHOTOGRAMMETRIC RECORD, 2024, 39 (186): : 392 - 411
  • [10] Enhanced Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Zhan, Yanting
    Wu, Ke
    Dong, Yanni
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7171 - 7186