Enumerating all solutions for constraint satisfaction problems

被引:0
作者
Schnoor, Henning [1 ]
Schnoor, Ilka [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Informat, Appelstr 4, D-30167 Hannover, Germany
来源
STACS 2007, PROCEEDINGS | 2007年 / 4393卷
关键词
computational complexity; constraints; enumeration;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We contribute to the study of efficient enumeration algorithms for all solutions of constraint satisfaction problems. The only algorithm known so far, presented by Creignou and Hebrard [CH97] and generalized by Cohen [Coh04]. reduces the enumeration problem for a constraint language F to the decision problem for a slightly enlarged constraint language Gamma(+), i.e., it yields an efficient enumeration algorithm for the case where CSP(Gamma(+)) is tractable. We develop a new class of algorithms, yielding efficient enumeration algorithms for a broad class of constraint languages. For the three-element domain, we achieve a first step towards a dichotomy theorem for the enumeration problem.
引用
收藏
页码:694 / +
页数:3
相关论文
共 18 条
[1]  
ALLENDER E, 2005, P 30 INT S MATH FDN, P71
[2]  
Böhler E, 2002, LECT NOTES COMPUT SC, V2471, P412
[3]   Classifying the complexity of constraints using finite algebras [J].
Bulatov, A ;
Jeavons, P ;
Krokhin, A .
SIAM JOURNAL ON COMPUTING, 2005, 34 (03) :720-742
[4]  
BULATOV A, 2000, 27 INT C AUT LANG PR, P272
[5]   A dichotomy theorem for constraint satisfaction problems on a 3-element set [J].
Bulatov, AA .
JOURNAL OF THE ACM, 2006, 53 (01) :66-120
[6]   Tractable decision for a constraint language implies tractable search [J].
Cohen, DA .
CONSTRAINTS, 2004, 9 (03) :219-229
[7]   Complexity of generalized satisfiability counting problems [J].
Creignou, N ;
Hermann, M .
INFORMATION AND COMPUTATION, 1996, 125 (01) :1-12
[8]   On generating all solutions of generalized satisfiability problems [J].
Creignou, N ;
Hebrard, JJ .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1997, 31 (06) :499-511
[9]  
Creignou N., 2001, MONOGRAPHS DISCRETE
[10]  
Dalmau V, 2005, IEEE S LOG, P438