Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds

被引:20
|
作者
Abarzua-Illanes, Phammela N. [1 ]
Padilla, Cristina [1 ]
Ramos, Andrea [2 ]
Isaacs, Mauricio [3 ,4 ]
Ramos-Grez, Jorge [4 ,5 ]
Olguin, Hugo C. [6 ]
Valenzuela, Loreto M. [1 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Sch Engn, Dept Chem & Bioproc Engn, Santiago, Chile
[2] Univ Atlantico, Fac Ciencias Basicas, Programa Quim, Barranquilla, Colombia
[3] Pontificia Univ Catolica Chile, Sch Chem, Dept Inorgan Chem, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Res Ctr Nanotechnol & Adv Mat Cien UC, Santiago, Chile
[5] Pontificia Univ Catolica Chile, Sch Engn, Dept Mech & Met Engn, Santiago, Chile
[6] Pontificia Univ Catolica Chile, Sch Biol Sci, Dept Cellular & Mol Biol, Santiago, Chile
关键词
muscle regeneration; electrospinning; myoblasts; PCL; PLGA; decorin; PERIPHERAL-NERVE REGENERATION; WALLERIAN DEGENERATION; HEART-VALVES; ALLOGRAFTS; DECELLULARIZATION; TISSUE; MOTOR; GRAFTS; REPAIR; TRANSPLANTATION;
D O I
10.1002/jbm.a.36091
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polymer scaffolds are used as an alternative to support tissue regeneration when it does not occur on its own. Cell response on polymer scaffolds is determined by factors such as polymer composition, topology, and the presence of other molecules. We evaluated the cellular response of murine skeletal muscle myoblasts on aligned or unaligned fibers obtained by electrospinning poly(e-caprolactone) (PCL), and blends with poly(lactic-co-glycolic acid) (PLGA) or decorin, a proteoglycan known to regulate myogenesis. The results showed that aligned PCL fibers with higher content of PLGA promote cell growth and improve the quality of differentiation with PLGA scaffolds having the highest confluence at over 68% of coverage per field of view for myoblasts and more than 7% of coverage for myotubes. At the same time, the addition of decorin greatly improves the quantity and quality of differentiated cells in terms of cell fusion, myotube length and thickness, being 71, 10, and 51% greater than without the protein, respectively. Interestingly, our results suggest that at certain concentrations, the effect of decorin on myoblast differentiation exceeds the topological effect of fiber alignment. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2241 / 2251
页数:11
相关论文
共 50 条
  • [1] Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly (ε-caprolactone, PCL) composite meshes
    Chaudhuri, B.
    Mondal, B.
    Kumar, S.
    Sarkar, S. C.
    MATERIALS LETTERS, 2016, 182 : 194 - 197
  • [2] Optical scattering in electrospun poly(ε-caprolactone) tissue scaffolds
    Park, ChangKyoo
    Choi, Hae Woon
    Lee, Carol H.
    Lannutti, John J.
    Farson, Dave F.
    JOURNAL OF LASER APPLICATIONS, 2014, 26 (03)
  • [3] Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth
    Baranowska-Korczyc, Anna
    Warowicka, Alicja
    Jasiurkowska-Delaporte, Malgorzata
    Grzeskowiak, Bartosz
    Jarek, Marcin
    Maciejewska, Barbara M.
    Jurga-Stopa, Justyna
    Jurga, Stefan
    RSC ADVANCES, 2016, 6 (24): : 19647 - 19656
  • [4] Electrospun poly(caprolactone)-elastin scaffolds for peripheral nerve regeneration
    Swindle-Reilly K.E.
    Paranjape C.S.
    Miller C.A.
    Progress in Biomaterials, 2014, 3 (1)
  • [5] Evaluating Osteogenic Differentiation of Mesenchymal Stem Cells on Poly(caprolactone) Electrospun Scaffolds by Image Processing Techniques
    N. Sadeghzade
    M. Nouri
    A. Shams Nateri
    BioNanoScience, 2020, 10 : 381 - 388
  • [6] Nanoclay-Enriched Poly(ε-caprolactone) Electrospun Scaffolds for Osteogenic Differentiation of Human Mesenchymal Stem Cells
    Gaharwar, Akhilesh K.
    Mukundan, Shilpaa
    Karaca, Elif
    Dolatshahi-Pirouz, Alireza
    Patel, Alpesh
    Rangarajan, Kaushik
    Mihaila, Silvia M.
    Iviglia, Giorgio
    Zhang, Hongbin
    Khademhosseini, Ali
    TISSUE ENGINEERING PART A, 2014, 20 (15-16) : 2088 - 2101
  • [7] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering
    Chen, Honglin
    Fan, Xianqun
    Xia, Jing
    Chen, Ping
    Zhou, Xiaojian
    Huang, Jin
    Yu, Jiahui
    Gu, Ping
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 453 - 461
  • [8] Evaluating Osteogenic Differentiation of Mesenchymal Stem Cells on Poly(caprolactone) Electrospun Scaffolds by Image Processing Techniques
    Sadeghzade, N.
    Nouri, M.
    Shams Nateri, A.
    BIONANOSCIENCE, 2020, 10 (02) : 381 - 388
  • [9] Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds
    Samanta, Archana
    Takkar, Sonam
    Kulshreshtha, Ritu
    Nandan, Bhanu
    Srivastava, Rajiv K.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 533 : 224 - 230
  • [10] The thickness of electrospun poly (ε-caprolactone) nanofibrous scaffolds influences cell proliferation
    Ghasemi-Mobarakeh, Laleh
    Morshed, Mohammad
    Karbalaie, Khadijeh
    Fesharaki, Mehr-Afarin
    Nematallahi, Marziyeh
    Nasr-Esfahani, Mohammad-Hossein
    Baharvand, Hossein
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2009, 32 (03): : 150 - 158