Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes

被引:187
作者
Manjakkal, Libu [1 ]
Nunez, Carlos Garcia [1 ]
Dang, Wenting [1 ]
Dahiya, Ravinder [1 ]
机构
[1] Univ Glasgow, Sch Engn, Bendable Elect & Sensing Technol BEST Grp, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Supercapacitor; Graphene foam; Self-powered systems; Wearable systems; pH sensor; Energy storage; HIGH-PERFORMANCE; MICRO-SUPERCAPACITORS; 3D GRAPHENE; OXIDE; COMPOSITES; NETWORK; SENSORS;
D O I
10.1016/j.nanoen.2018.06.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A flexible three-dimensional porous graphene foam-based supercapacitor (GFSC) is presented here for energy storage applications. With a novel layered structure of highly conductive electrodes (graphene-Ag conductive epoxy-graphene foam), forming an electrochemical double layer, the GFSC exhibits excellent electrochemical and supercapacitive performance. At a current density of 0.67 mA cm(-2), the GFSCs show excellent performance with areal capacitance (38 mF cm(-2)) about three times higher than the values reported for flexible carbon-based SCs. The observed energy and power densities (3.4 mu W h cm(-2) and 0.27 mW cm(-2) respectively) are better than the values reported for carbon-based SCs. Analyzed under static and dynamic bending conditions, the GFSCs are stable with up to 68% capacitance retention after 25000 charge-discharge cycles. The light-weight, cost-effective fabrication and no self-heating make the GFSCs a promising alternative to conventional source of energy in the broad power density ranging from few nW cm(-2) to mW cm(-2). In this regard, GFSC was integrated with a flexible photovoltaic cell resulting in a flexible self-charging power pack. This pack was successfully utilized to power continuously a wearable CuO nanorod based chemi-resistive pH sensor.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 46 条
[1]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[2]   Non-invasive wearable electrochemical sensors: a review [J].
Bandodkar, Amay J. ;
Wang, Joseph .
TRENDS IN BIOTECHNOLOGY, 2014, 32 (07) :363-371
[3]   Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance [J].
Beidaghi, Majid ;
Wang, Chunlei .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4501-4510
[4]   Effect of different gel electrolytes on graphene-based solid-state supercapacitors [J].
Chen, Qiao ;
Li, Xinming ;
Zang, Xiaobei ;
Cao, Yachang ;
He, Yijia ;
Li, Peixu ;
Wang, Kunlin ;
Wei, Jinquan ;
Wu, Dehai ;
Zhu, Hongwei .
RSC ADVANCES, 2014, 4 (68) :36253-36256
[5]   Stretchable wireless system for sweat pH monitoring [J].
Dang, Wenting ;
Manjakkal, Libu ;
Navaraj, William Taube ;
Lorenzelli, Leandro ;
Vinciguerra, Vincenzo ;
Dahiya, Ravinder .
BIOSENSORS & BIOELECTRONICS, 2018, 107 :192-202
[6]   Printable stretchable interconnects [J].
Dang W. ;
Vinciguerra V. ;
Lorenzelli L. ;
Dahiya R. .
Flexible and Printed Electronics, 2017, 2 (01)
[7]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[8]   Towards flexible solid-state supercapacitors for smart and wearable electronics [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2065-2129
[9]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[10]   Multisource Coordination Energy Management Strategy Based on SOC Consensus for a PEMFC-Battery-Supercapacitor Hybrid Tramway [J].
Han, Ying ;
Li, Qi ;
Wang, Tianhong ;
Chen, Weirong ;
Ma, Lei .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) :296-305