Microelectromechanical control of the state of quantum cascade laser frequency combs

被引:6
作者
Burghoff, David [1 ,2 ]
Han, Ningren [1 ]
Kapsalidis, Filippos [3 ]
Henry, Nathan [4 ]
Beck, Mattias [3 ]
Khurgin, Jacob [4 ]
Faist, Jerome [3 ]
Hu, Qing [1 ]
机构
[1] MIT, Res Lab Elect, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[4] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
关键词
DISPERSION COMPENSATION;
D O I
10.1063/1.5098086
中图分类号
O59 [应用物理学];
学科分类号
摘要
Chip-scale frequency combs such as those based on quantum cascade lasers (QCLs) or microresonators are attracting tremendous attention because of their potential to solve key challenges in sensing and metrology. Though nonlinearity and proper dispersion engineering can create a comb-light whose lines are perfectly evenly spaced-these devices can enter into different states depending on their history, a critical problem that can necessitate slow and manual intervention. Moreover, their large repetition rates are problematic for applications such as dual comb molecular spectroscopy, requiring gapless tuning of the offset. Here, we show that by blending midinfrared QCL combs with microelectromechanical comb drives, one can directly manipulate the dynamics of the comb and identify new physical effects. Not only do the resulting devices remain on a chip-scale and are able to stably tune over large frequency ranges, but they can also switch between different comb states at extremely high speeds. We use these devices to probe hysteresis in comb formation and develop a protocol for achieving a particular comb state regardless of its initial state. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Plasmon-enhanced waveguide for dispersion compensation in mid-infrared quantum cascade laser frequency combs [J].
Bidaux, Yves ;
Sergachev, Ilia ;
Wuester, Wolf ;
Maulini, Richard ;
Gresch, Tobias ;
Bismuto, Alfredo ;
Blaser, Stephane ;
Muller, Antoine ;
Faist, Jerome .
OPTICS LETTERS, 2017, 42 (08) :1604-1607
[2]   Dispersion dynamics of quantum cascade lasers [J].
Burghoff, David ;
Yang, Yang ;
Reno, John L. ;
Hu, Qing .
OPTICA, 2016, 3 (12) :1362-1365
[3]   Computational multiheterodyne spectroscopy [J].
Burghoff, David ;
Yang, Yang ;
Hu, Qing .
SCIENCE ADVANCES, 2016, 2 (11)
[4]   Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs [J].
Burghoff, David ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
OPTICS EXPRESS, 2015, 23 (02) :1190-1202
[5]   Terahertz laser frequency combs [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Han, Ningren ;
Chan, Chun Wang Ivan ;
Cai, Xiaowei ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
NATURE PHOTONICS, 2014, 8 (06) :462-467
[6]   Broadband all-electronically tunable MEMS terahertz quantum cascade lasers [J].
Han, Ningren ;
de Geofroy, Alexander ;
Burghoff, David P. ;
Chan, Chun Wang I. ;
Lee, Alan Wei Min ;
Reno, John L. ;
Hu, Qing .
OPTICS LETTERS, 2014, 39 (12) :3480-3483
[7]   Self-corrected chip-based dual-comb spectrometer [J].
Hebert, Nicolas Bourbeau ;
Genest, Jerome ;
Deschenes, Jean-Daniel ;
Bergeron, Hugo ;
Chen, George Y. ;
Khurmi, Champak ;
Lancaster, David G. .
OPTICS EXPRESS, 2017, 25 (07) :8168-8179
[8]   Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions [J].
Henry, Nathan ;
Burghoff, David ;
Hu, Qing ;
Khurgin, Jacob B. .
OPTICS EXPRESS, 2018, 26 (11) :14201-14212
[9]   Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers [J].
Henry, Nathan ;
Burghoff, David ;
Yang, Yang ;
Hu, Qing ;
Khurgin, Jacob B. .
OPTICAL ENGINEERING, 2018, 57 (01)
[10]   Tunable dispersion compensation of quantum cascade laser frequency combs [J].
Hillbrand, Johannes ;
Jouy, Pierre ;
Beck, Mattias ;
Faist, Jerome .
OPTICS LETTERS, 2018, 43 (08) :1746-1749