Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion

被引:66
作者
Wang, Yifu [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Haptotaxis; Nonlinear diffusion; Boundedness; Logistic source; BLOW-UP; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; CANCER INVASION; SYSTEM; TISSUE;
D O I
10.1016/j.jde.2015.09.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the chemotaxis- haptotaxis model {u(t) = del . (D(u)del u) - chi del .(u del v) - xi del . (u del w) + mu u(1 - u - w), x is an element of Omega, t > 0, v(t) = Delta v - v + u, x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0 in a bounded smooth domain Omega subset of R-n (n >= 2), where chi, xi and mu are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u) = delta(u + 1)(-alpha) with alpha is an element of R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u(0), v(0), w(0)) and alpha < 2/n - 1, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded. This paper develops some L-p-estimate techniques and thereby extends boundedness results in n <= 3 to arbitrary space dimensions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1975 / 1989
页数:15
相关论文
共 32 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
Cao X., ARXIV150105383
[3]  
Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399
[4]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[5]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[6]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[7]   Quasilinear nonuniformly parabolic system modelling chemotaxis [J].
Cieslak, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1410-1426
[8]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[9]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[10]   Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains [J].
Ishida, Sachiko ;
Seki, Kiyotaka ;
Yokota, Tomomi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2993-3010