CNN-Based Modulation Classification for OFDM Signal

被引:0
|
作者
Song, Geonho [1 ]
Jang, Mingyu [1 ]
Yoon, Dongweon [1 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul, South Korea
来源
12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION | 2021年
关键词
automatic modulation classification (AMC); machine learning; orthogonal frequency division multiplexing (OFDM); convolutional neural network (CNN);
D O I
10.1109/ICTC52510.2021.9620896
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation classification (AMC) is one of the important parts in cooperative and noncooperative contexts. This paper approaches the AMC problem by using deep learning. We propose a convolutional neural network (CNN)-based AMC to classify the modulation type of received orthogonal frequency division multiplexing (OFDM) signal and analyze its classification performance. CNN model is trained by using received OFDM signals for different modulation types and signal-to-noise ratios, and then classification accuracy is validated through computer simulations.
引用
收藏
页码:1326 / 1328
页数:3
相关论文
共 50 条
  • [41] Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification
    Zhang, Shuyu
    Xu, Meng
    Zhou, Jun
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images
    Goto, Tomoya
    Ishigami, Genya
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2021, 33 (06) : 1294 - 1302
  • [43] Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment
    Gao, Hongbo
    Cheng, Bo
    Wang, Jianqiang
    Li, Keqiang
    Zhao, Jianhui
    Li, Deyi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (09) : 4224 - 4231
  • [44] Optimized Input for CNN-Based Hyperspectral Image Classification Using Spatial Transformer Network
    He, Xin
    Chen, Yushi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (12) : 1884 - 1888
  • [45] Optimizing Video Compression With CNN-Based Autoencoders With Chroma Subsampling
    Ghassab V.K.
    Gonsalves R.
    Mathur S.
    Bouguila N.
    SMPTE Motion Imaging Journal, 2023, 132 (03): : 18 - 26
  • [46] A Data Preprocessing Method for Automatic Modulation Classification Based on CNN
    Zhang, Haozheng
    Huang, Ming
    Yang, Jingjing
    Sun, Wei
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (04) : 1206 - 1210
  • [47] Deep Fusion for Radar Jamming Signal Classification Based on CNN
    Shao, Guangqing
    Chen, Yushi
    Wei, Yinsheng
    IEEE ACCESS, 2020, 8 : 117236 - 117244
  • [48] Modulation Signal Classification and Recognition Algorithm Based on Signal to Noise Ratio Classification Network
    Guo Yecai
    Yao Wenqiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3507 - 3515
  • [49] CNN-Based Learnable Gammatone Filterbank and Equal-Loudness Normalization for Environmental Sound Classification
    Park, Hyunsin
    Yoo, Chang D.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 411 - 415
  • [50] A CNN-Based E-Nose Using Time Series Features for Food Freshness Classification
    Ren, Xudong
    Wang, Yudong
    Huang, Yuan
    Mustafa, Muhammad
    Sun, Dongbo
    Xue, Feng
    Chen, Dongliang
    Xu, Lei
    Wu, Feng
    IEEE SENSORS JOURNAL, 2023, 23 (06) : 6027 - 6038