Buchdahl-Vaidya-Tikekar model for stellar interior in pure Lovelock gravity

被引:22
作者
Molina, Alfred [1 ]
Dadhich, Naresh [2 ,3 ]
Khugaev, Avas [4 ]
机构
[1] Univ Barcelona, Inst Ciencies Cosmos, Dept Fis Quant & Astrofis, Barcelona, Spain
[2] Jamia Millia Islamia, Ctr Theoret Phys, New Delhi 110025, India
[3] Interuniv Ctr Astron & Astrophys, Post Bag 4, Pune 411007, Maharashtra, India
[4] Natl Univ Uzbekistan, Dept Phys, Tashkent, Uzbekistan
关键词
Spherical symmetry; Lovelock equations; Compact-super dense stars; EXTENDED EINSTEIN EQUATIONS; SYMMETRICAL-SOLUTIONS; FLUID SPHERES; BLACK-HOLES;
D O I
10.1007/s10714-017-2259-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the paper (Khugaev et al. in Phys Rev D94: 064065. arXiv: 1603.07118, 2016), we have shown that for perfect fluid spheres the pressure isotropy equation for Buchdahl-Vaidya-Tikekar metric ansatz continues to have the same Gauss form in higher dimensions, and hence higher dimensional solutions could be obtained by redefining the space geometry characterizing Vaidya-Tikekar parameter K. In this paper we extend this analysis to pure Lovelock gravity; i.e. a (2N + 2)-dimensional solution with a given K2N+2 can be taken over to higher n- dimensional pure Lovelock solution with Kn = (K2N+ 2 - n + 2N + 2)/(n - 2N - 1) where N is degree of Lovelock action. This ansatz includes the uniform density Schwarzshild and the FinchSkea models, and it is interesting that the two define the two ends of compactness, the former being the densest and while the latter rarest. All other models with this ansatz lie in between these two limiting distributions.
引用
收藏
页数:17
相关论文
共 24 条
  • [1] [Anonymous], 1953, METHODS THEORETICAL
  • [2] DIMENSIONALLY CONTINUED BLACK-HOLES
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW D, 1994, 49 (02): : 975 - 986
  • [3] Generating perfect fluid spheres in general relativity
    Boonserm, P
    Visser, M
    Weinfurtner, S
    [J]. PHYSICAL REVIEW D, 2005, 71 (12)
  • [4] Buchdahl-like transformations for perfect fluid spheres
    Boonserm, Petarpa
    Visser, Matt
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (01): : 135 - 163
  • [5] Solution generating theorems for the Tolman-Oppenheimer-Volkov equation
    Boonserm, Petarpa
    Visser, Matt
    Weinfurtner, Silke
    [J]. PHYSICAL REVIEW D, 2007, 76 (04):
  • [6] GENERAL RELATIVISTIC FLUID SPHERES
    BUCHDAHL, HA
    [J]. PHYSICAL REVIEW, 1959, 116 (04): : 1027 - 1034
  • [7] REMARK ON A FAMILY OF STATIC RELATIVISTIC STELLAR MODELS
    BUCHDAHL, HA
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1984, 1 (03) : 301 - 304
  • [8] On Lovelock analogs of the Riemann tensor
    Camanho, Xian O.
    Dadhich, Naresh
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (02):
  • [9] Dadhich N., ARXIV160601330
  • [10] Dadhich N., ARXIV160707095