Bohr billiard: Decay in the chaotic Hamiltonian system with two integrals of motion

被引:0
作者
Elyutin, PV
PavlovVerevkin, BV
机构
[1] Department of Physics, Moscow State University, Moscow
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5044
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The two-dimensional system of two identical hard disks moving freely within the circular potential well (billiard) of finite depth is studied as an example of the Hamiltonian chaotic system with two integrals of motion-the total energy and the total angular momentum. The kinetics of decay in the ensemble of such systems with fixed values of integrals of motion can be described by the exponential law, if the energy is lower than the threshold of two-particle decay. For this range the rate of the decay is calculated analytically as a function of energy, angular momentum, and the ratio of disk and billiard radii. The numerical calculations confirm the theoretical estimate of the decay rate in the wide range of its values.
引用
收藏
页码:5044 / 5050
页数:7
相关论文
共 21 条
[1]  
[Anonymous], DOKL AKAD NAUK SSSR
[2]  
BENNETTIN G, 1978, PHYS REV A, V17, P773
[3]   Transmutations of atomic nuclei [J].
Bohr, N .
SCIENCE, 1937, 86 (2225) :161-165
[4]  
Bohr N., 1936, NATURE, V137, P344, DOI [10.1038/137344a0, DOI 10.1038/137344A0]
[5]   NUMERICAL STUDY OF A D-DIMENSIONAL PERIODIC LORENTZ GAS WITH UNIVERSAL PROPERTIES [J].
BOUCHAUD, JP ;
LEDOUSSAL, P .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (1-2) :225-248
[6]   CLUSTER DYNAMICS - CLASSICAL TRAJECTORY STUDY OF A + AN REVERSIBLE AN+1-STAR [J].
BRADY, JW ;
DOLL, JD ;
THOMPSON, DL .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (06) :2467-2472
[7]  
Bunimovich L. A., 1985, Soviet Physics - JETP, V62, P842
[8]  
Bunimovich L.A., 1974, Uspekhi Mat. Nauk, V8, P73
[9]   IRREGULAR SCATTERING WITH COMPLEX TARGET [J].
CHEON, T ;
SHIGEHARA, T ;
YOSHINAGA, N .
PROGRESS OF THEORETICAL PHYSICS, 1995, 93 (02) :483-488
[10]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400