Heat kernels on metric measure spaces and an application to semilinear elliptic equations

被引:108
作者
Grigor'yan, A
Hu, JX
Lau, KS
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[3] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
D O I
10.1090/S0002-9947-03-03211-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a metric measure space (M, d, mu) and a heat kernel p(t) (x, y) on M satisfying certain upper and lower estimates, which depend on two parameters alpha and beta. We show that under additional mild assumptions, these parameters are determined by the intrinsic properties of the space (M, d, mu). Namely, alpha is the Hausdorff dimension of this space, whereas beta, called the walk dimension, is determined via the properties of the family of Besov spaces W-sigma,W-2 on M. Moreover, the parameters alpha and beta are related by the inequalities 2 less than or equal to beta less than or equal to alpha + 1. We prove also the embedding theorems for the space W-beta/2,W-2, and use them to obtain the existence results for weak solutions to semilinear elliptic equations on M of the form -Lu + f(x, u) = g(x), where C is the generator of the semigroup associated with p(t). The framework in this paper is applicable for a large class of fractal domains, including the generalized Sierpiniski carpet in R-n.
引用
收藏
页码:2065 / 2095
页数:31
相关论文
共 17 条
[1]  
Aronszajn N., 1961, Ann. Inst. Fourier., V11, P385, DOI [10.5802/aif.116, DOI 10.5802/AIF.116]
[2]  
Barlow M., 1998, LECT NOTES MATH, V1690, P1
[3]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[4]  
Biroli M., 1995, REND LINCEI-MAT APPL, V6, P37
[5]  
CARLEN EA, 1987, ANN I H POINCARE-PR, V23, P245
[6]   TRANSITION DENSITY ESTIMATES FOR BROWNIAN-MOTION ON AFFINE NESTED FRACTALS [J].
FITZSIMMONS, PJ ;
HAMBLY, BM ;
KUMAGAI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :595-620
[7]  
FUKUSAKO S, 1994, ANN GLACIOL, V19, P126, DOI 10.3189/1994AoG19-1-126-130
[8]   Sub-Gaussian estimates of heat kernels on infinite graphs [J].
Grigor'yan, A ;
Telcs, A .
DUKE MATHEMATICAL JOURNAL, 2001, 109 (03) :451-510
[9]  
Grigor'yan A., 1999, LONDON MATH SOC LECT, V273, P140
[10]   Brownian motion on fractals and function spaces [J].
Jonsson, A .
MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) :495-504