Scaling transition for nonlinear random fields with long-range dependence

被引:17
作者
Pilipauskaite, Vytaute [1 ,2 ]
Surgailis, Donatas [1 ]
机构
[1] Vilnius Univ, Akad 4, LT-08663 Vilnius, Lithuania
[2] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
关键词
Scaling transition; Anisotropic long-range dependence; Fractionally integrated random field; Appell polynomials; Multiple Ito-Wiener integral; Fractional Brownian sheet; CENTRAL LIMIT-THEOREMS; COEFFICIENT AR(1) PROCESSES; RANDOM-VARIABLES; MOVING AVERAGES; AGGREGATION; FUNCTIONALS; CONVERGENCE; INTEGRALS; MODEL; SUMS;
D O I
10.1016/j.spa.2016.12.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain a complete description of anisotropic scaling limits and the existence of scaling transition for nonlinear functions (Appell polynomials) of stationary linear random fields on Z(2) with moving average coefficients decaying at possibly different rate in the horizontal and the vertical direction. The paper extends recent results on scaling transition for linear random fields in Puplinskaite and Surgailis (2015, 2016). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2751 / 2779
页数:29
相关论文
共 42 条
[1]   Macroscaling Limit Theorems for Filtered Spatiotemporal Random Fields [J].
Anh, V. V. ;
Leonenko, N. N. ;
Ruiz-Medina, M. D. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (03) :460-508
[2]  
[Anonymous], 1993, J AGR BIOL ENVIR ST
[3]  
[Anonymous], 2007, Stat. Inference Stoch. Process
[4]  
ARCONES M. A, 1994, ANN PROBAB, V22, P2242
[5]   NONCENTRAL LIMIT-THEOREMS AND APPELL POLYNOMIALS [J].
AVRAM, F ;
TAQQU, MS .
ANNALS OF PROBABILITY, 1987, 15 (02) :767-775
[6]   Generalized Hermite processes, discrete chaos and limit theorems [J].
Bai, Shuyang ;
Taqqu, Murad S. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (04) :1710-1739
[7]   Operator scaling stable random fields [J].
Bierme, Hermine ;
Meerschaert, Mark M. ;
Scheffler, Hans-Peter .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) :312-332
[8]   Parameter estimates for fractional autoregressive spatial processes [J].
Boissy, Y ;
Bhattacharyya, BB ;
Li, X ;
Richardson, GD .
ANNALS OF STATISTICS, 2005, 33 (06) :2553-2567
[9]   ON THE CENTRAL LIMIT-THEOREM FOR STATIONARY MIXING RANDOM-FIELDS [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1982, 10 (04) :1047-1050
[10]   CENTRAL LIMIT-THEOREMS FOR NON-LINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
BREUER, P ;
MAJOR, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (03) :425-441