Hitting times for special patterns in the symmetric exclusion process on Zd

被引:0
|
作者
Asselah, A
Pra, PD
机构
[1] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille 13, France
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
quasistationary measures; attractive processes; hitting times; Yaglom limit; h process;
D O I
10.1214/009117904000000487
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the symmetric exclusion process {eta(t), t > 0} on {0,1}(Zd). We fix a pattern A := {eta: Sigma(Lambda) eta(i) greater than or equal to k}, where Lambda is a finite subset of Z(d) and k is an integer, and we consider the problem of establishing sharp estimates for tau, the hitting time of A. We present a novel argument based on monotonicity which helps in some cases to obtain sharp tail asymptotics for tau in a simple way. Also, we characterize the trajectories {eta(s), s less than or equal to t} conditioned on (T > t).
引用
收藏
页码:3301 / 3323
页数:23
相关论文
共 1 条
  • [1] Uniformity of hitting times of the contact process
    Heydenreich, Markus
    Hirsch, Christian
    Valesin, Daniel
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 233 - 245