Genomic, Transcriptomic, and Functional Alterations in DNA Damage Response Pathways as Putative Biomarkers of Chemotherapy Response in Ovarian Cancer

被引:9
|
作者
Sharma Saha, Sweta [1 ]
Gentles, Lucy [1 ]
Bradbury, Alice [1 ]
Brecht, Dominik [2 ]
Robinson, Rebecca [3 ]
O'Donnell, Rachel [1 ,4 ]
Curtin, Nicola J. [1 ]
Drew, Yvette [1 ,5 ]
机构
[1] Newcastle Univ, Fac Med Sci, Translat & Clin Res Inst, Ctr Canc, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Univ Konstanz, Dept Chem Biol, D-78464 Constance, Germany
[3] Newcastle Univ, Dept Biomed Nutrit & Sports Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Newcastle Hosp NHS Fdn Trust, Northern Ctr Gynaecol Surg, Northern Canc Alliance, Newcastle Upon Tyne NE1 4LP, Tyne & Wear, England
[5] Newcastle Hosp NHS Fdn Trust, Northern Ctr Canc Care NCCC, Newcastle Upon Tyne NE7 7DN, Tyne & Wear, England
关键词
DNA damage repair; chemotherapy; ovarian cancer; biomarker; STRAND BREAK REPAIR; EPITHELIAL OVARIAN; FALLOPIAN-TUBE; OPEN-LABEL; PLATINUM; CARCINOMA; INHIBITOR; SURVIVAL; MULTICENTER; SENSITIVITY;
D O I
10.3390/cancers13061420
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Several chemotherapy drugs are approved for ovarian cancer treatment in the neo-adjuvant/adjuvant setting as well as following relapse. These include carboplatin, paclitaxel, doxorubicin, topotecan, PARP inhibitors (PARPi), and gemcitabine. However, except for PAPRi, there are no predictive biomarkers to guide the choice of drug. The majority of chemotherapeutic drugs function by inducing DNA damage or inhibiting its repair. However, the association of DNA damage repair (DDR) pathway alterations with therapy response remain unclear. In this study, using a panel of 14 ovarian cancer cell lines, 10 patient ascites-derived primary cultures and bioinformatic analysis of The Cancer Genome Atlas (TCGA) ovarian cancer dataset, we identified the role of genomic/transcriptomic and/or functional alterations in DDR pathways as determinants of therapy response. Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g., due to BRCA1/2 loss, is a determinant of response to platinum agents and PARP inhibitors in ovarian cancers. Most chemotherapies function by either inducing DNA damage or impacting on its repair but are generally used in the clinic unselectively. The significance of HRR and other DDR pathways in determining response to several other chemotherapy drugs is not well understood. In this study, the genomic, transcriptomic and functional analysis of DDR pathways in a panel of 14 ovarian cancer cell lines identified that defects in DDR pathways could determine response to several chemotherapy drugs. Carboplatin, rucaparib, and topotecan sensitivity were associated with functional loss of HRR (validated in 10 patient-derived primary cultures) and mismatch repair. Two DDR gene expression clusters correlating with treatment response were identified, with PARP10 identified as a novel marker of platinum response, which was confirmed in The Cancer Genome Atlas (TCGA) ovarian cancer cohort. Reduced non-homologous end-joining function correlated with increased sensitivity to doxorubicin, while cells with high intrinsic oxidative stress showed sensitivity to gemcitabine. In this era of personalised medicine, molecular/functional characterisation of DDR pathways could guide chemotherapy choices in the clinic allowing specific targeting of ovarian cancers.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] DNA methylation alterations: Promising biomarkers for diagnosis and treatment response in cancer
    Tost, J.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S14 - S14
  • [32] The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition and Putative Role in Response to Stress Conditions
    Nisa, Maher-Un
    Huang, Ying
    Benhamed, Moussa
    Raynaud, Cecile
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [33] DNA Damage Response Pathways in Dinoflagellates
    Li, Chongping
    Wong, Joseph Tin Yum
    MICROORGANISMS, 2019, 7 (07)
  • [34] Chemotherapy: Biomarkers of chemotherapy response in breast cancer
    Richards L.
    Nature Reviews Clinical Oncology, 2010, 7 (5) : 241 - 241
  • [35] Aberrant DNA Damage Response Pathways May Predict the Outcome of Platinum Chemotherapy in Ovarian Cancer (vol 10, e0117654, 2015)
    Stefanou, Dimitra T.
    Bamias, Aristotelis
    Episkopou, Hara
    Kyrtopoulos, Soterios A.
    Likka, Maria
    Kalampokas, Theodore
    Photiou, Stylianos
    Gavalas, Nikos
    Sfikakis, Petros P.
    Dimopoulos, Meletios A.
    Souliotis, Vassilis L.
    PLOS ONE, 2021, 16 (08):
  • [36] IDENTIFICATION OF GENOMIC AND TRANSCRIPTOMIC ALTERATIONS IN THE DNA DAMAGE RESPONSE PATHWAY OF ACUTE MYELOID LEUKEMIA PATIENTS: POTENTIAL TARGETS OF SYNTHETIC LETHALITY APPROACHES
    Padella, A.
    Simonetti, G.
    Fontana, M. C.
    Marconi, G.
    Ferrari, A.
    Papayannidis, C.
    Bruno, S.
    Pazzaglia, M.
    Fonzi, E.
    Ottaviani, E.
    Cavo, M.
    Soverini, S.
    Martinelli, G.
    HAEMATOLOGICA, 2018, 103 : S73 - S73
  • [37] Prognostic value of genomic alterations in DNA damage response (DDR) genes in relapsed/advanced bladder cancer (BCa).
    Yin, Ming
    Grivas, Petros
    Folefac, Edmund
    Clinton, Steven K.
    Emamekhoo, Hamid
    Holder, Sheldon L.
    Drabick, Joseph J.
    Woo, Michele Sue-Ann
    Vasekar, Monali K.
    Pal, Sumanta K.
    Joshi, Monika
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (07)
  • [38] Identification of Predictive DNA Methylation Biomarkers for Chemotherapy Response in Colorectal Cancer
    Baharudin, Rashidah
    Ab Mutalib, Nurul-Syakima
    Othman, Sri N.
    Sagap, Ismail
    Rose, Isa M.
    Mokhtar, Norfilza Mohd
    Jamal, Rahman
    FRONTIERS IN PHARMACOLOGY, 2017, 8
  • [39] Immune biomarkers associated with response to intra-peritoneal chemotherapy in ovarian cancer
    Simons, E.
    Kiet, T.
    Amanam, I.
    Ho, M.
    Fuh, J.
    Fuh, K.
    Kapp, D.
    Odunsi, K.
    Chan, J.
    GYNECOLOGIC ONCOLOGY, 2012, 125 : S141 - S141
  • [40] DNA Damage Response Gene Alterations in Urothelial Cancer: Ready for Practice?
    Grivas, Petros
    CLINICAL CANCER RESEARCH, 2019, 25 (03) : 907 - 909