Recurrence and transience for long range reversible random walks on a random point process
被引:14
作者:
论文数: 引用数:
h-index:
机构:
Caputo, Pietro
[1
]
论文数: 引用数:
h-index:
机构:
Faggionato, Alessandra
[2
]
Gaudilliere, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tre, Dip Matemat, I-00146 Rome, ItalyUniv Roma Tre, Dip Matemat, I-00146 Rome, Italy
Gaudilliere, Alexandre
[1
]
机构:
[1] Univ Roma Tre, Dip Matemat, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dip Matemat, I-00185 Rome, Italy
来源:
ELECTRONIC JOURNAL OF PROBABILITY
|
2009年
/
14卷
基金:
欧洲研究理事会;
关键词:
random walk in random environment;
recurrence;
transience;
point process;
electrical network;
RANDOM ENVIRONMENT;
MOTT LAW;
PERCOLATION;
FIELDS;
D O I:
10.1214/EJP.v14-721
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider reversible random walks in random environment obtained from symmetric long-range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.