Recurrence and transience for long range reversible random walks on a random point process

被引:14
作者
Caputo, Pietro [1 ]
Faggionato, Alessandra [2 ]
Gaudilliere, Alexandre [1 ]
机构
[1] Univ Roma Tre, Dip Matemat, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dip Matemat, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
random walk in random environment; recurrence; transience; point process; electrical network; RANDOM ENVIRONMENT; MOTT LAW; PERCOLATION; FIELDS;
D O I
10.1214/EJP.v14-721
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider reversible random walks in random environment obtained from symmetric long-range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
引用
收藏
页码:2580 / 2616
页数:37
相关论文
共 25 条
[1]  
ADDARIOBERRY L, SIMPLE RANDOM WALK R
[2]  
[Anonymous], 1999, PERCOLATION
[3]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[4]   Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi .
MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (02) :297-320
[5]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[6]  
Benjamini I, 1998, ANN PROBAB, V26, P1198
[7]   Transience, recurrence and critical behavior for long-range percolation [J].
Berger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (03) :531-558
[8]   DIFFUSIVITY IN ONE-DIMENSIONAL GENERALIZED MOTT VARIABLE-RANGE HOPPING MODELS [J].
Caputo, P. ;
Faggionato, A. .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (04) :1459-1494
[9]   Isoperimetric inequalities and mixing time for a random walk on a random point process [J].
Caputo, Pietro ;
Faggionato, Alessandra .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6) :1707-1744
[10]  
Delay D.J., 2003, INTRO THEORY POINT P, V1