Classification of breast cancer using microarray gene expression data: A survey

被引:39
|
作者
Abd-Elnaby, Muhammed [1 ]
Alfonse, Marco [1 ]
Roushdy, Mohamed [2 ]
机构
[1] Ain Shams Univ, Fac Comp & Informat Sci, Cairo, Egypt
[2] Future Univ, Fac Comp & Informat Technol, New Cairo, Egypt
关键词
Feature selection; Machine learning; Cancer classification; Microarray data;
D O I
10.1016/j.jbi.2021.103764
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cancer, in particular breast cancer, is considered one of the most common causes of death worldwide according to the world health organization. For this reason, extensive research efforts have been done in the area of accurate and early diagnosis of cancer in order to increase the likelihood of cure. Among the available tools for diagnosing cancer, microarray technology has been proven to be effective. Microarray technology analyzes the expression level of thousands of genes simultaneously. Although the huge number of features or genes in the microarray data may seem advantageous, many of these features are irrelevant or redundant resulting in the deterioration of classification accuracy. To overcome this challenge, feature selection techniques are a mandatory preprocessing step before the classification process. In the paper, the main feature selection and classification techniques introduced in the literature for cancer (particularly breast cancer) are reviewed to improve the microarray-based classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ensemble Feature Selection for Breast Cancer Classification using Microarray Data
    Hengpraprohm, Supoj
    Jungjit, Suwimol
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2020, 23 (65): : 100 - 114
  • [2] Cancer classification by gradient LDA technique using microarray gene expression data
    Sharma, Alok
    Paliwal, Kuldip K.
    DATA & KNOWLEDGE ENGINEERING, 2008, 66 (02) : 338 - 347
  • [3] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    IEEE ACCESS, 2019, 7 : 78533 - 78548
  • [4] Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning
    Guillen, Pablo
    Ebalunode, Jerry
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1403 - 1405
  • [5] Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review
    Osama, Sarah
    Shaban, Hassan
    Ali, Abdelmgeid A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [6] Cancer Classification Analysis for Microarray Gene Expression Data by Integrating Wavelet Transform and Visual Analysis
    Ji, Soo-Yeon
    Jeong, Dong Hyun
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 17 - 22
  • [7] Breast Cancer Classification With Microarray Gene Expression Data Based on Improved Whale Optimization Algorithm
    Devi, S. Sathiya
    Prithiviraj, K.
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2023, 14 (01)
  • [8] Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
    Maniruzzaman, Md
    Rahman, Md Jahanur
    Ahammed, Benojir
    Abedin, Md Menhazul
    Suri, Harman S.
    Biswas, Mainak
    El-Baz, Ayman
    Bangeas, Petros
    Tsoulfas, Georgios
    Suri, Jasjit S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 176 : 173 - 193
  • [9] Efficient Gene Expression Data Analysis using ES-DBN For Microarray Cancer Data Classification
    Sucharita S.
    Sahu B.
    Swarnkar T.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [10] Gene subset selection in microarray data using entropic filtering for cancer classification
    Navarro, Felix F. Gonzalez
    Munoz, Lluis A. Belanche
    EXPERT SYSTEMS, 2009, 26 (01) : 113 - 124