Electrical, thermal, and viscoelastic properties of graphene nanoplatelet/poly(butylene adipate-co-terephthalate) biodegradable nanocomposites

被引:21
|
作者
Kashi, Sima [1 ]
Gupta, Rahul K. [1 ]
Kao, Nhol [1 ]
Bhattacharya, Sati N. [1 ]
机构
[1] RMIT Univ, Sch Engn, Rheol & Materials Proc RMPC Ctr, Melbourne, Vic 3000, Australia
关键词
biodegradable; composites; graphene; thermogravimetric analysis (TGA); viscosity and viscoelasticity; poly(butylene adipate-co-terephthalate); POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE); RHEOLOGICAL BEHAVIOR; PHYSICAL-PROPERTIES; CARBON NANOTUBES; POLYLACTIDE; CRYSTALLIZATION; PERFORMANCE; PERCOLATION; MORPHOLOGY;
D O I
10.1002/app.43620
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Graphene nanoplatelets (GNPs) were dispersed in poly(butylene adipate-co-terephthalate) (PBAT) by melt-blending. Scanning electron micrographs showed good dispersion of GNPs in PBAT at low concentrations while at higher loadings, the platelets became physically in contact forming conductive pathways. Electrical conductivity of PBAT was enhanced markedly with GNP addition with a distinctly faster rate for GNP loadings higher than 6 wt % because of formation of conductive networks. Interestingly, thermal stability of PBAT was also found to increase for GNP loadings above 6 wt %. Dynamic viscoelastic properties of the nanocomposites exhibited significant enhancement with increasing GNPs. In particular, storage modulus showed less frequency dependency in the low frequency region leading to a percolation threshold of between 6 and 9 wt %, above which time-temperature superposition principle failed. Steady shear measurements revealed that GNP incorporation increased the zero-shear viscosity markedly and intensified the shear thinning behavior. Carreau model well described the shear viscosity of all the compositions. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43620.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effect of γ-radiation on the thermal and mechanical properties of a commercial poly(butylene adipate-co-terephthalate)
    Han, Changyu
    Bian, Junjia
    Liu, Hao
    Dong, Lisong
    POLYMER INTERNATIONAL, 2009, 58 (06) : 691 - 696
  • [32] Biodegradable poly(butylene adipate-co-terephthalate)/poly(vinyl acetate) blends with improved rheological and mechanical properties
    Ye Zhang
    Lijuan Wang
    Changyu Han
    Journal of Polymer Research, 2022, 29
  • [33] A Comparative Study on the Melt Crystallization of Biodegradable Poly(butylene succinate-co-terephthalate) and Poly(butylene adipate-co-terephthalate) Copolyesters
    Qin, Pengkai
    Wu, Linbo
    POLYMERS, 2024, 16 (17)
  • [34] Thermo stabilisation of poly (butylene adipate-co-terephthalate)
    Chaves, Rodrigo Paulino
    Macedo Fechine, Guilhermino Jose
    POLIMEROS-CIENCIA E TECNOLOGIA, 2016, 26 (02): : 102 - 105
  • [35] Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance
    Li, Yi
    Zhao, Lijia
    Han, Changyu
    Yu, Yancun
    COLLOID AND POLYMER SCIENCE, 2020, 298 (4-5) : 463 - 475
  • [36] Analysis of oligomers in poly (butylene succinate) and poly (butylene adipate-co-terephthalate)
    Zhang, Chuanhui
    Chen, Chao
    Ouyang, Chunping
    Zeng, Xiangbin
    Guo, Zhilong
    Lai, Fenghua
    Li, Jianjun
    POLYMER BULLETIN, 2023, 80 (04) : 4487 - 4502
  • [37] Wood plastic composites based on recycled poly(ethylene terephthalate) and poly(butylene adipate-co-terephthalate)
    Chaiwutthinan, Phasawat
    Pimpong, Aphichat
    Larpkasemsuk, Amnouy
    Chuayjuljit, Saowaroj
    Boonmahitthisud, Anyaporn
    JOURNAL OF METALS MATERIALS AND MINERALS, 2019, 29 (02): : 87 - 97
  • [38] Polylactide/poly(butylene adipate-co-terephthalate)/rare earth complexes as biodegradable light conversion agricultural films
    Wang, Dongmei
    Yu, Yinlei
    Ai, Xue
    Pan, Hongwei
    Zhang, Huiliang
    Dong, Lisong
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (01) : 203 - 211
  • [39] Analysis of oligomers in poly (butylene succinate) and poly (butylene adipate-co-terephthalate)
    Chuanhui Zhang
    Chao Chen
    Chunping Ouyang
    Xiangbin Zeng
    Zhilong Guo
    Fenghua Lai
    Jianjun Li
    Polymer Bulletin, 2023, 80 : 4487 - 4502
  • [40] Enhanced Mechanical Properties of Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Nanocomposites Obtained by In Situ Polymerization
    Kim, Hyeri
    Jeon, Hyeonyeol
    Lee, Minkyung
    Park, Seul-A
    Kim, Seon-Mi
    Park, Sung Bae
    Kim, Kyung Youn
    Kim, Seong Dong
    Oh, Dongyeop X.
    Koo, Jun Mo
    Hwang, Sung Yeon
    Park, Jeyoung
    ACS APPLIED POLYMER MATERIALS, 2022, 5 (01): : 635 - 643