Electrical, thermal, and viscoelastic properties of graphene nanoplatelet/poly(butylene adipate-co-terephthalate) biodegradable nanocomposites

被引:21
|
作者
Kashi, Sima [1 ]
Gupta, Rahul K. [1 ]
Kao, Nhol [1 ]
Bhattacharya, Sati N. [1 ]
机构
[1] RMIT Univ, Sch Engn, Rheol & Materials Proc RMPC Ctr, Melbourne, Vic 3000, Australia
关键词
biodegradable; composites; graphene; thermogravimetric analysis (TGA); viscosity and viscoelasticity; poly(butylene adipate-co-terephthalate); POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE); RHEOLOGICAL BEHAVIOR; PHYSICAL-PROPERTIES; CARBON NANOTUBES; POLYLACTIDE; CRYSTALLIZATION; PERFORMANCE; PERCOLATION; MORPHOLOGY;
D O I
10.1002/app.43620
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Graphene nanoplatelets (GNPs) were dispersed in poly(butylene adipate-co-terephthalate) (PBAT) by melt-blending. Scanning electron micrographs showed good dispersion of GNPs in PBAT at low concentrations while at higher loadings, the platelets became physically in contact forming conductive pathways. Electrical conductivity of PBAT was enhanced markedly with GNP addition with a distinctly faster rate for GNP loadings higher than 6 wt % because of formation of conductive networks. Interestingly, thermal stability of PBAT was also found to increase for GNP loadings above 6 wt %. Dynamic viscoelastic properties of the nanocomposites exhibited significant enhancement with increasing GNPs. In particular, storage modulus showed less frequency dependency in the low frequency region leading to a percolation threshold of between 6 and 9 wt %, above which time-temperature superposition principle failed. Steady shear measurements revealed that GNP incorporation increased the zero-shear viscosity markedly and intensified the shear thinning behavior. Carreau model well described the shear viscosity of all the compositions. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43620.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Viscoelastic properties and physical gelation of poly (butylene adipate-co-terephthalate)/graphene nanoplatelet nanocomposites at elevated temperatures
    Kashi, Sima
    Gupta, Rahul K.
    Kao, Nhol
    Bhattacharya, Sati N.
    POLYMER, 2016, 101 : 347 - 357
  • [2] Rheology and Physical Characterization of Graphene Nanoplatelet/ Poly (butylene adipate-co-terephthalate) Nanocomposites
    Kashi, Siena
    Gupta, Rahul K.
    Kao, Nhol
    Bhattacharya, Sati N.
    PROCEEDINGS OF PPS-32: THE 32ND INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2017, 1914
  • [3] Morphology, Thermal and Mechanical Properties of Biodegradable Poly(butylene succinate)/Poly(butylene adipate-co-terephthalate)/Clay Nanocomposites
    Ibrahim, N. A.
    Chieng, B. W.
    Yunus, W. M. Z. Wan
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2010, 49 (15) : 1571 - 1580
  • [4] Biodegradable poly(butylene adipate-co-terephthalate) (PBAT)
    Burford, Ty
    Rieg, William
    Madbouly, Samy
    PHYSICAL SCIENCES REVIEWS, 2021, : 1127 - 1156
  • [5] Preparation, Crystallization, and Properties of Biodegradable Poly(butylene adipate-co-terephthalate)/Organomodified Montmorillonite Nanocomposites
    Yang, Fang
    Qiu, Zhaobin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (03) : 1426 - 1434
  • [6] Biodegradable Poly(butylene adipate-co-terephthalate) Antibacterial Nanocomposites Reinforced with MgO Nanoparticles
    Wang, Xionggang
    Cui, Lingna
    Fan, Shuhong
    Li, Xia
    Liu, Yuejun
    POLYMERS, 2021, 13 (04) : 1 - 11
  • [7] Biodegradable Poly(butylene adipate-co-terephthalate) Nanocomposites Reinforced with In Situ Fibrillated Nanocelluloses
    Wang, Zhiren
    Jin, Kexia
    Lim, Khak Ho
    Liu, Pingwei
    Lu, Dan
    Yang, Xuan
    Wang, Wen-jun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (27) : 9947 - 9955
  • [8] Biodegradable nanocomposites of poly (butylene adipate-co-terephthalate) (PBAT) with organically modified nanoclays
    Mohanty, Smita
    Nayak, Sanjay Kumar
    INTERNATIONAL JOURNAL OF PLASTICS TECHNOLOGY, 2010, 14 (02) : 192 - 212
  • [9] Effect of Glycerol Stearates on the Thermal and Barrier Properties of Biodegradable Poly(butylene Adipate-Co-Terephthalate)
    Yuan, Jing
    Zhang, Xinpeng
    Xu, Jun
    Ding, Jianping
    Li, Wanli
    Guo, Baohua
    MATERIALS, 2024, 17 (23)
  • [10] Mechanical and thermal properties of poly(vinyl chloride)/poly(butylene adipate-co-terephthalate) clay nanocomposites
    Rahim, M. N. M.
    Ibrahim, N. A.
    Sharif, J.
    Yunus, W. M. Z. Wan
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (21) : 3219 - 3225