Feasible noiseless linear amplification for single-photon qudit and two-photon hyperentanglement encoded in three degrees of freedom

被引:2
作者
Xu, Bao-Wen [1 ,2 ,3 ]
Zhang, Jie [1 ]
Zhou, Lan [1 ]
Zhong, Wei [4 ,5 ]
Sheng, Yu-Bo [4 ,5 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Microelect, Nanjing 210003, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Single-photon qudit; Hyperentanglement; Noiseless linear amplification; ORBITAL-ANGULAR-MOMENTUM; QUANTUM; COMMUNICATION; STATE;
D O I
10.1007/s11128-021-03096-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hyper-encoded photon qudits and hyperentanglement can effectively increase the channel capacity and have been widely used in quantum communication field. Photon transmission loss is one of the main obstacles of quantum communication, which can reduce the communication efficiency and even threaten the security. In the paper, we propose a feasible noiseless linear amplification (NLA) protocol for protecting the single-photon qudit and two-photon hyperentanglement encoded in polarization and double-longitudinal momentum degrees of freedom (DOFs). The NLA protocol is in linear optics, and especially, it adopts practical imperfect single photon sources to generate auxiliary photons. As a result, it can be realized under current experimental condition. By performing the NLA protocol, we can increase the fidelity of target qudit and hyperentanglement and preserve their encoding features in all DOFs. This NLA protocol has application potential in current and future high-capacity quantum communication field.
引用
收藏
页数:20
相关论文
共 64 条
  • [1] Bennett C H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [3] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [4] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    [J]. NATURE, 1997, 390 (6660) : 575 - 579
  • [5] Heralded amplification of photonic qubits
    Bruno, Natalia
    Pini, Vittorio
    Martin, Anthony
    Verma, Varun B.
    Nam, Sae Woo
    Mirin, Richard
    Lita, Adriana
    Marsili, Francesco
    Korzh, Boris
    Bussieres, Felix
    Sangouard, Nicolas
    Zbinden, Hugo
    Gisin, Nicolas
    Thew, Rob
    [J]. OPTICS EXPRESS, 2016, 24 (01): : 125 - 133
  • [6] Security of quantum key distribution using d-level systems -: art. no. 127902
    Cerf, NJ
    Bourennane, M
    Karlsson, A
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4 - 127902
  • [7] Chau H., 2016, ARXIV160808329
  • [8] Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit
    Chen, Ling-Quan
    Sheng, Yu-Bo
    Zhou, Lan
    [J]. CHINESE PHYSICS B, 2019, 28 (01)
  • [9] Three-step three-party quantum secure direct communication
    Chen, Shan-Shan
    Zhou, Lan
    Zhong, Wei
    Sheng, Yu-Bo
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
  • [10] Bell inequalities for arbitrarily high-dimensional systems
    Collins, D
    Gisin, N
    Linden, N
    Massar, S
    Popescu, S
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (04) : 4 - 404044