An error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes

被引:19
作者
Blanc, P [1 ]
Eymard, R [1 ]
Herbin, R [1 ]
机构
[1] Univ Aix Marseille 1, Marseille, France
关键词
finite volume scheme; Stokes equation;
D O I
10.1002/num.20020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give here an error estimate for a finite volume discretization of the Stokes equations in two space dimensions on equilateral triangular meshes. This work was initiated by an analogous result presented by Alami-Idrissi and Atounti for general triangular meshes. However, in this latter article, the result is not actually proven. We state here the restricting assumptions (namely equilateral triangles) under which the error estimate holds, using the tools which were introduced by Eymard, Gallouet and Herbin and used by Alami-Idrissi and Atounti. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:907 / 918
页数:12
相关论文
共 7 条
[1]  
ALAMIIDRISSI A, 2002, J INEQUALITIES PURE, V3
[2]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[3]   A cell-centered finite volume scheme on general meshes for the Stokes equations in two space dimensions [J].
Eymard, R ;
Herbin, R .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (02) :125-128
[4]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[5]  
EYMARD R, 2003, FINITE VOLUME SCHEME
[6]   Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions [J].
Gallouët, T ;
Herbin, E ;
Vignal, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :1935-1972
[7]  
HERBIN R, 1995, NUMER METH PART D E, V11, P165, DOI DOI 10.1002/NUM.1690110205.URL