Fabrication of inverted inorganic-organic quantum-dot light-emitting diodes with solution-processed n-type oxide electron injection layers and QD-polymer blend light-emitting layers

被引:2
作者
Itoh, Eiji [1 ]
Yamane, Sosei [1 ]
Fukuda, Katsutoshi [2 ]
机构
[1] Shinshu Univ, Dept Elect & Comp Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
[2] Kyoto Univ, Off Soc Acad Collaborat Innovat, Kyoto 6068501, Japan
关键词
quantum dot; polymer; oxide; AZO nanoparticles; titanium oxide nanosheet; light-emitting diode; NANOSHEETS;
D O I
10.35848/1347-4065/ac55dc
中图分类号
O59 [应用物理学];
学科分类号
摘要
We fabricated inorganic-organic hybrid quantum-dot light-emitting-diodes (QD-LEDs) consisting of several types of solution-processed n-type oxide electron injection layers (EILs)/quantum-dot (QD) and poly (9-vinylcarbazole) (PVK) blend light emitting layer (EMLs)/4,4-bis(carbazole-9yl)bihpheyl (CBP)/a-NPD/1,4,5,8,9, 11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) hole injection layer/Al structures. We compared the electrical properties of hybrid QD-LEDs with solution-processed n-type oxide electron injection layers consisting of Al-doped ZnO nano-particles (AZO-NP), polyethyleneimine (PEI), titanium oxide nanosheet (TiO-NS) on PEI (PEI/TiO-NS), and AZO-NP/TiO-NS multilayers. The combination of the PEI dipole layer and ultra-thin TiO-NS nanosheet (similar to 1 nm) layers reduced the potential barrier at ITO/TiO-NS interface. However, a considerable barrier height of >0.3 eV exists at the TiO-NS/QD interface. The use of small-work function AZO-NP (3.9 eV) effectively improves external quantum efficiency (EQE) compared with relatively large work-function AZO-NP (4.3 eV) and TiO-NS (4.1 eV). The capacitance-voltage curves and the current density-voltage-luminance curves strongly depend on the thickness of the QD:PVK blend (2:1 in weight) layer, and we obtained the optimized thickness for EML as ca. 30 nm. With the improved charge balance and morphology, an EQE of above 3.0% is obtained for green light-emitting QD-LED and an EQE of 0.86% for blue light-emitting QD-LED.
引用
收藏
页数:6
相关论文
共 31 条
[21]   ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes [J].
Moyen, Eric ;
Kim, Joo Hyun ;
Kim, Jeonggi ;
Jang, Jin .
ACS APPLIED NANO MATERIALS, 2020, 3 (06) :5203-5211
[22]   Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks [J].
Osada, Minoru ;
Sasaki, Takayoshi .
ADVANCED MATERIALS, 2012, 24 (02) :210-228
[23]   Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies [J].
Sakai, N ;
Ebina, Y ;
Takada, K ;
Sasaki, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5851-5858
[24]   ORGANIC ELECTROLUMINESCENT DIODES [J].
TANG, CW ;
VANSLYKE, SA .
APPLIED PHYSICS LETTERS, 1987, 51 (12) :913-915
[25]   Contactless analysis of electric dipoles at high-k/SiO2 interfaces by surface-charge-switched electron spectroscopy [J].
Toyoda, S. ;
Fukuda, K. ;
Itoh, E. ;
Sugaya, H. ;
Morita, M. ;
Nakata, A. ;
Uchimoto, Y. ;
Matsubara, E. .
APPLIED PHYSICS LETTERS, 2016, 108 (21)
[26]   Highly efficient organic light-emitting diodes from delayed fluorescence [J].
Uoyama, Hiroki ;
Goushi, Kenichi ;
Shizu, Katsuyuki ;
Nomura, Hiroko ;
Adachi, Chihaya .
NATURE, 2012, 492 (7428) :234-+
[27]   Unlocking the full potential of organic light-emitting diodes on flexible plastic [J].
Wang, Z. B. ;
Helander, M. G. ;
Qiu, J. ;
Puzzo, D. P. ;
Greiner, M. T. ;
Hudson, Z. M. ;
Wang, S. ;
Liu, Z. W. ;
Lu, Z. H. .
NATURE PHOTONICS, 2011, 5 (12) :753-757
[28]  
White MS, 2013, NAT PHOTONICS, V7, P811, DOI [10.1038/nphoton.2013.188, 10.1038/NPHOTON.2013.188]
[29]   Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition [J].
Zhang, Hao ;
Ding, He ;
Wei, Mengjie ;
Li, Chunya ;
Wei, Bin ;
Zhang, Jianhua .
NANOSCALE RESEARCH LETTERS, 2015, 10 :1-5
[30]   Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21% [J].
Zhang, Heng ;
Chen, Shuming ;
Sun, Xiao Wei .
ACS NANO, 2018, 12 (01) :697-704