TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

被引:39
|
作者
Liu, Jun [1 ,2 ]
Akanuma, Naoki [1 ,2 ]
Liu, Chengyang [3 ]
Naji, Ali [3 ]
Halff, Glenn A. [4 ]
Washburn, William K. [4 ]
Sun, Luzhe [1 ,2 ]
Wang, Pei [1 ,2 ]
机构
[1] Univ Texas Heath Sci Ctr San Antonio, Dept Cellular, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
[2] Univ Texas Heath Sci Ctr San Antonio, Dept Struct Biol, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
[3] Univ Penn, Sch Med, Dept Surg, Philadelphia, PA 19104 USA
[4] Univ Texas Hlth Sci Ctr San Antonio, Transplant Ctr, San Antonio, TX 78229 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
TRANSFORMING-GROWTH-FACTOR; INTRAEPITHELIAL NEOPLASIA; FACTOR-BETA; TGF-BETA; EXPRESSION; KRAS; TRANSDIFFERENTIATION; PLASTICITY; INDUCTION; CANCER;
D O I
10.1038/srep30904
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-beta 1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis
    Niu, Ningning
    Lu, Ping
    Yang, Yanlin
    He, Ruizhe
    Zhang, Li
    Shi, Juanjuan
    Wu, Jinghua
    Yang, Minwei
    Zhang, Zhi-Gang
    Wang, Li-Wei
    Gao, Wei-Qiang
    Habtezion, Aida
    Xiao, Gary Guishan
    Sun, Yongwei
    Li, Li
    Xue, Jing
    GUT, 2020, 69 (04) : 715 - 726
  • [32] FRA1 controls acinar cell plasticity during murine KrasG12D-induced pancreatic acinar to ductal metaplasia
    Li, Alina L.
    Sugiura, Kensuke
    Nishiwaki, Noriyuki
    Suzuki, Kensuke
    Sadeghian, Dorsay
    Zhao, Jun
    Maitra, Anirban
    Falvo, David
    Chandwani, Rohit
    Pitarresi, Jason R.
    Sims, Peter A.
    Rustgi, Anil K.
    DEVELOPMENTAL CELL, 2024, 59 (22) : 3025 - 3042.e7
  • [33] Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse
    Bangs, Fiona K.
    Miller, Paul
    O'Neili, Eric
    DISEASE MODELS & MECHANISMS, 2020, 13 (07)
  • [34] Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis
    Costamagna, Andrea
    Natalini, Dora
    Leal, Maria del Pilar Camacho
    Simoni, Matilde
    Gozzelino, Luca
    Cappello, Paola
    Novelli, Francesco
    Ambrogio, Chiara
    Defilippi, Paola
    Turco, Emilia
    Giovannetti, Elisa
    Hirsch, Emilio
    Cabodi, Sara
    Martini, Miriam
    GASTROENTEROLOGY, 2022, 162 (04) : 1242 - +
  • [35] Epigenetic small-molecule screen for inhibition and reversal of acinar ductal metaplasia in mouse pancreatic organoids
    Atanasova, Kalina R.
    Perkins, Corey M.
    Ratnayake, Ranjala
    Jiang, Jinmai
    Chen, Qi-Yin
    Schmittgen, Thomas D.
    Luesch, Hendrik
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [36] Cancer-associated acinar-to-ductal metaplasia within the invasive front of pancreatic cancer contributes to local invasion
    Kibe, Shin
    Ohuchida, Kenoki
    Ando, Yohei
    Takesue, Shin
    Nakayama, Hiromichi
    Abe, Toshiya
    Endo, Sho
    Koikawa, Kazuhiro
    Okumura, Takashi
    Iwamoto, Chika
    Shindo, Koji
    Moriyama, Taiki
    Nakata, Kohei
    Miyasaka, Yoshihiro
    Shimamoto, Masaya
    Ohtsuka, Takao
    Mizumoto, Kazuhiro
    Oda, Yoshinao
    Nakamura, Masafumi
    CANCER LETTERS, 2019, 444 : 70 - 81
  • [37] Metabolic Reprogramming Is an Initial Step in Pancreatic Carcinogenesis That Can Be Targeted to Inhibit Acinar-to-Ductal Metaplasia
    Neuss, Thorsten
    Chen, Min-Chun
    Wirges, Nils
    Usluer, Sinem
    Oellinger, Rupert
    Lier, Svenja
    Dudek, Michael
    Madl, Tobias
    Jastroch, Martin
    Steiger, Katja
    Schmitz, Werner
    Einwaechter, Henrik
    Schmid, Roland M.
    CANCER RESEARCH, 2024, 84 (14) : 2297 - 2312
  • [38] Small molecular weight epigenetic inhibitors modulate the extracellular matrix during pancreatic acinar ductal metaplasia
    Perkins, Corey M.
    Mao, Yating
    Jiang, Jinmai
    Wilkie, Diana J.
    Han, Bo
    Chen, Qi-Yin
    Luesch, Hendrik
    Ali, Jamel
    Schmittgen, Thomas D.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 736
  • [39] Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids
    Huang, Ling
    Desai, Ridhdhi
    Conrad, Daniel N.
    Leite, Nayara C.
    Akshinthala, Dipikaa
    Lim, Christine Maria
    Gonzalez, Raul
    Muthuswamy, Lakshmi B.
    Gartner, Zev
    Muthuswamy, Senthil K.
    CELL STEM CELL, 2021, 28 (06) : 1090 - +
  • [40] Generation of Hydrogen Peroxide and Downstream Protein Kinase D1 Signaling Is a Common Feature of Inducers of Pancreatic Acinar-to-Ductal Metaplasia
    Doppler, Heike R.
    Liou, Geou-Yarh
    Storz, Peter
    ANTIOXIDANTS, 2022, 11 (01)