TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

被引:39
|
作者
Liu, Jun [1 ,2 ]
Akanuma, Naoki [1 ,2 ]
Liu, Chengyang [3 ]
Naji, Ali [3 ]
Halff, Glenn A. [4 ]
Washburn, William K. [4 ]
Sun, Luzhe [1 ,2 ]
Wang, Pei [1 ,2 ]
机构
[1] Univ Texas Heath Sci Ctr San Antonio, Dept Cellular, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
[2] Univ Texas Heath Sci Ctr San Antonio, Dept Struct Biol, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
[3] Univ Penn, Sch Med, Dept Surg, Philadelphia, PA 19104 USA
[4] Univ Texas Hlth Sci Ctr San Antonio, Transplant Ctr, San Antonio, TX 78229 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
TRANSFORMING-GROWTH-FACTOR; INTRAEPITHELIAL NEOPLASIA; FACTOR-BETA; TGF-BETA; EXPRESSION; KRAS; TRANSDIFFERENTIATION; PLASTICITY; INDUCTION; CANCER;
D O I
10.1038/srep30904
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-beta 1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells
    Benitz, Simone
    Regel, Ivonne
    Reinhard, Tobias
    Popp, Anna
    Schaeffer, Isabell
    Raulefs, Susanne
    Kong, Bo
    Esposito, Irene
    Michalski, Christoph W.
    Kleeff, Joerg
    ONCOTARGET, 2016, 7 (10) : 11424 - 11433
  • [22] Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury
    Fendrich, Volker
    Jendryschek, Frederike
    Beeck, Saskia
    Albers, Max
    Lauth, Matthias
    Esni, Farzad
    Heeger, Kristin
    Dengler, Janina
    Slater, Emily P.
    Holler, Julia P. N.
    Baier, Aninja
    Bartsch, Detlef K.
    Waldmann, Jens
    ONCOGENE, 2018, 37 (14) : 1845 - 1856
  • [23] Acinar Ductal Metaplasia: Yap Fills a Gap
    Means, Anna L.
    Logsdon, Craig D.
    GASTROENTEROLOGY, 2016, 151 (03) : 393 - 395
  • [24] Sirtuin-1 Regulates Acinar-to-Ductal Metaplasia and Supports Cancer Cell Viability in Pancreatic Cancer
    Wauters, Elke
    Sanchez-Arevalo Lobo, Victor J.
    Pinho, Andreia V.
    Mawson, Amanda
    Herranz, Daniel
    Wu, Jianmin
    Cowley, Mark J.
    Colvin, Emily K.
    Njicop, Erna Ngwayi
    Sutherland, Rob L.
    Liu, Tao
    Serrano, Manuel
    Bouwens, Luc
    Real, Francisco X.
    Biankin, Andrew V.
    Rooman, Ilse
    CANCER RESEARCH, 2013, 73 (07) : 2357 - 2367
  • [25] Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia
    Liu, Xin
    Pitarresi, Jason R.
    Cuitino, Maria C.
    Kladney, Raleigh D.
    Woelke, Sarah A.
    Sizemore, Gina M.
    Nayak, Sunayana G.
    Egriboz, Onur
    Schweickert, Patrick G.
    Yu, Lianbo
    Trela, Stefan
    Schilling, Daniel J.
    Halloran, Shannon K.
    Li, Maokun
    Dutta, Shourik
    Fernandez, Soledad A.
    Rosol, Thomas J.
    Lesinski, Gregory B.
    Shakya, Reena
    Ludwig, Thomas
    Konieczny, Stephen F.
    Leone, Gustavo
    Wu, Jinghai
    Ostrowski, Michael C.
    GENES & DEVELOPMENT, 2016, 30 (17) : 1943 - 1955
  • [26] Pancreatic Acinar Cell Carcinomas With Prominent Ductal Differentiation: Mixed Acinar Ductal Carcinoma and Mixed Acinar Endocrine Ductal Carcinoma
    Stelow, Edward B.
    Shaco-Levy, Ruthy
    Bao, Fei
    Garcia, Joaquin
    Klimstra, David S.
    AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2010, 34 (04) : 510 - 518
  • [27] ANGPTL4 accelerates KRASG12D-Induced acinar to ductal metaplasia and pancreatic carcinogenesis
    Yan, Hong Hua
    Jung, Kyung Hee
    Lee, Ji Eun
    Son, Mi Kwon
    Fang, Zhenghuan
    Park, Jung Hee
    Kim, Soo Jung
    Kim, Ju Young
    Lim, Ju Han
    Hong, Soon-Sun
    CANCER LETTERS, 2021, 519 : 185 - 198
  • [28] Suppression of dystroglycan function accompanies pancreatic acinar-to-ductal metaplasia and favours dysplasia development
    Huang, Ge
    Ternes, Luke
    Lanciault, Christian
    MacPherson-Hawthorne, Kevin
    Chang, Young Hwan
    Sears, Rosalie C.
    Muschler, John L.
    JOURNAL OF PATHOLOGY, 2024, 264 (04) : 411 - 422
  • [29] Conversion of Human Pancreatic Acinar Cells Toward a Ductal-Mesenchymal Phenotype and the Role of Transforming Growth Factor β and Activin Signaling
    De Waele, Evelien
    Wauters, Elke
    Ling, Zhidong
    Bouwens, Luc
    PANCREAS, 2014, 43 (07) : 1083 - 1092
  • [30] Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer
    Marstrand-Dauce, Louis
    Lorenzo, Diane
    Chassac, Anais
    Nicole, Pascal
    Couvelard, Anne
    Haumaitre, Cecile
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)