A Computationally Economic Location Algorithm for Bistatic EVMS-MIMO Radar

被引:17
作者
Liu, Tingting [1 ]
Wen, Fangqing [2 ]
Shi, Junpeng [3 ]
Gong, Ziheng [4 ]
Xu, Hui [1 ]
机构
[1] Yangtze Univ, Sch Econ & Management, Jingzhou 434023, Peoples R China
[2] Yangtze Univ, Natl Demonstrat Ctr Expt Elect & Elect Educ, Jingzhou 434023, Peoples R China
[3] Natl Univ Def Technol, Hefei 230037, Anhui, Peoples R China
[4] Beijing Univ Posts & Telecommun, Telecommun Engn Management, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; MIMO radar; electromagnetic vector sensors; propagator method; PHASE ERROR ESTIMATION; ANGLE ESTIMATION; 2D-DOA ESTIMATION; DOA ESTIMATION; SUBSPACE APPROACH; VECTOR-SENSOR; MASSIVE MIMO; LOCALIZATION;
D O I
10.1109/ACCESS.2019.2937577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigated into the problem of target location in a bistatic multiple-input multiple-output (MIMO), whose transmit antennas and receive antennas are electromagnetic vector sensors (EMVS). Unlike the traditional linear scaler-sensor array, a linear EMVS array can offer two-diemensional (2D) direction estimation, thus a bistatic EMVS-MIMO radar provides (2D) direction-of-arrival and 2D direction-of-departure estimation. Besides, it is able to estimate 2D transmit/receive polarization angles of the targets. An propagator method (PM)-based estimator is proposed. Firstly, it estimate the propagator from the covariance matrix. The parameters are achieved via utilizing the estimation method of signal parameters via rotational invariance technique (ESPRIT) and the vector cross-product technique. The proposed estimator is computationally friendly since it does not involving eigen decomposition of high-dimensional data. Also, it may has similar (or even better) parameter estimation accuracy than the current EPSRIT-Like algorithm. Simulation results verify the effectiveness of the proposed PM estimator.
引用
收藏
页码:120533 / 120540
页数:8
相关论文
共 40 条
  • [1] A low-complexity joint 2D-DOD and 2D-DOA estimation algorithm for MIMO radar with arbitrary arrays
    Chen, Chen
    Zhang, Xiaofei
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2013, 100 (10) : 1455 - 1469
  • [2] Multi-SVD based subspace estimation to improve angle estimation accuracy in bistatic MIMO radar
    Cheng, Yuanbing
    Yu, Rusheng
    Gu, Hong
    Su, Weimin
    [J]. SIGNAL PROCESSING, 2013, 93 (07) : 2003 - 2009
  • [3] 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors
    Chintagunta, Srinivasarao
    Ponnusamy, Palanisamy
    [J]. SIGNAL PROCESSING, 2018, 147 : 163 - 172
  • [4] Angle estimation using ESPRIT in MIMO radar
    Duofang, C.
    Baixiao, C.
    Guodong, Q.
    [J]. ELECTRONICS LETTERS, 2008, 44 (12) : 770 - 770
  • [5] MIMO radar: An idea whose time has come
    Fishler, E
    Haimovich, A
    Blum, R
    Chizhik, D
    Cimini, L
    Valenzuela, R
    [J]. PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, : 71 - 78
  • [6] Target localization using MIMO electromagnetic vector array systems
    Gu, Chen
    He, Jin
    Li, Hongtao
    Zhu, Xiaohua
    [J]. SIGNAL PROCESSING, 2013, 93 (07) : 2103 - 2107
  • [7] Deep Learning for an Effective Nonorthogonal Multiple Access Scheme
    Gui, Guan
    Huang, Hongji
    Song, Yiwei
    Sari, Hikmet
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) : 8440 - 8450
  • [8] Nested Vector-Sensor Array Processing via Tensor Modeling
    Han, Keyong
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (10) : 2542 - 2553
  • [9] Deep-Learning-Based Millimeter-Wave Massive MIMO for Hybrid Precoding
    Huang, Hongji
    Song, Yiwei
    Yang, Jie
    Gui, Guan
    Adachi, Fumiyuki
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) : 3027 - 3032
  • [10] Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System
    Huang, Hongji
    Yang, Jie
    Huang, Hao
    Song, Yiwei
    Gui, Guan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) : 8549 - 8560