Entanglement of three qubits

被引:1
作者
Wu, C.
Chen, J.-L.
Kwek, L. C.
Yeo, Ye.
Oh, C. H.
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Nankai Univ, Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[3] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore
关键词
D O I
10.1134/S1054660X07080142
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For the formulation of Bell inequalities, it is important to include not just N-site correlation functions, but also (N-n)-site correlation functions. In this article, we focus on a three-qubit Bell inequality, which has been shown to be a good candidate for generalizing Gisin's theorem to three qubits. The three-qubit Bell inequality can be used to detect the W-type entanglement in a proposed experiment.
引用
收藏
页码:1098 / 1102
页数:5
相关论文
共 23 条
  • [1] Generalized Schmidt decomposition and classification of three-quantum-bit states
    Acín, A
    Andrianov, A
    Costa, L
    Jané, E
    Latorre, JI
    Tarrach, R
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (07) : 1560 - 1563
  • [2] BELL INEQUALITIES WITH A MAGNITUDE OF VIOLATION THAT GROWS EXPONENTIALLY WITH THE NUMBER OF PARTICLES
    ARDEHALI, M
    [J]. PHYSICAL REVIEW A, 1992, 46 (09): : 5375 - 5378
  • [3] Testing quantum nonlocality in phase space
    Banaszek, K
    Wódkiewicz, K
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2009 - 2013
  • [4] Belinskii A. V., 1993, Physics-Uspekhi, V36, P653, DOI 10.1070/PU1993v036n08ABEH002299
  • [5] Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
  • [6] MAXIMAL VIOLATION OF BELL INEQUALITIES FOR MIXED STATES
    BRAUNSTEIN, SL
    MANN, A
    REVZEN, M
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (22) : 3259 - 3261
  • [7] Gisin's theorem for three qubits
    Chen, JL
    Wu, CF
    Kwek, LC
    Oh, CH
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (14) : 140407 - 1
  • [8] Bell inequalities for arbitrarily high-dimensional systems
    Collins, D
    Gisin, N
    Linden, N
    Massar, S
    Popescu, S
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (04) : 4 - 404044
  • [9] Three qubits can be entangled in two inequivalent ways
    Dur, W.
    Vidal, G.
    Cirac, J.I.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06): : 062314 - 062311
  • [10] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780