Study on weighted Nagar-Bardini algorithms for centroid type-reduction of general type-2 fuzzy logic systems

被引:7
作者
Chen, Yang [1 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
基金
中国国家自然科学基金;
关键词
alpha-planes representation; general type-2 fuzzy logic systems; type-reduction; weighted Nagar-Bardini algorithms; simulation; KARNIK-MENDEL ALGORITHMS; EDGE-DETECTION METHOD; INTERVAL TYPE-2; SETS; DEFUZZIFICATION; ROBOT;
D O I
10.3233/JIFS-182644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
General type-2 fuzzy logic systems (GT2 FLSs) have drawn great attentions since the alpha-planes representation of general type-2 fuzzy sets (GT2 FSs) was proposed. The iterative of type-reduction (TR) algorithms are difficult to apply in practical applications. In the enhanced types of algorithms, the Nagar-Bardini (NB) algorithms decrease the computation complexity greatly. In terms of the Newton-Cotes quadrature formulas of numerical integration techniques, the paper extends the NB algorithms to three different forms of weighted NB (WNB) algorithms according to the comparisons between the sum operation in NB algorithms and the integral operation in continuous version of NB (CNB) algorithms. The NB algorithms just become a special case of the WNB algorithms. Four simulation examples are used to illustrate and analyze the performances of the WNB algorithms while performing the centroid TR of GT2 FLSs. It also shows that, in general, the WNB algorithms have smaller absolute error and faster convergence speed compared with the NB algorithms, which provides the potential value for T2 FLSs designers and users.
引用
收藏
页码:6527 / 6544
页数:18
相关论文
共 39 条
  • [1] On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling
    Biglarbegian, Mohammad
    Melek, William
    Mendel, Jerry
    [J]. INFORMATION SCIENCES, 2011, 181 (07) : 1325 - 1347
  • [2] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [3] A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems
    Castillo, Oscar
    Amador-Angulo, Leticia
    Castro, Juan R.
    Garcia-Valdez, Mario
    [J]. INFORMATION SCIENCES, 2016, 354 : 257 - 274
  • [4] Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems
    Chen, Yang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2417 - 2428
  • [5] Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms
    Chen, Yang
    Wang, Dazhi
    [J]. SOFT COMPUTING, 2018, 22 (04) : 1361 - 1380
  • [6] Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms
    Chen, Yang
    Wang, Dazhi
    Ning, Wu
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (01) : 393 - 409
  • [7] Chen Y, 2017, INT J CONTROL AUTOM, V15, P2950, DOI [10.1007/s12555-016-0793-0, 10.1007/s12555-017-0793-0]
  • [8] Chen Y, 2015, INT J INNOV COMPUT I, V11, P1987
  • [9] Chen Yang, 2016, Control Theory & Applications, V33, P1327, DOI 10.7641/CTA.2016.60098
  • [10] Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: With the combination of BP algorithms and KM algorithms
    Chen, Yang
    Wang, Dazhi
    Tong, Shaocheng
    [J]. NEUROCOMPUTING, 2016, 174 : 1133 - 1146