Active hydrodynamics of synchronization and ordering in moving oscillators

被引:12
作者
Banerjee, Tirthankar [1 ]
Basu, Abhik [1 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, W Bengal, India
关键词
MOVEMENT PROMOTES SYNCHRONIZATION; CELL-MOVEMENT; NETWORKS; DYNAMICS; FLOW;
D O I
10.1103/PhysRevE.96.022201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] PHASE SYNCHRONIZATION OF LINEARLY AND NONLINEARLY COUPLED OSCILLATORS WITH INTERNAL RESONANCE
    Liu, Yong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (30): : 5715 - 5726
  • [32] Synchronization patterns in rings of time-delayed Kuramoto oscillators
    Denes, Karoly
    Sandor, Bulcsu
    Neda, Zoltan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 93
  • [33] Semi-passivity and synchronization of diffusively coupled neuronal oscillators
    Steur, Erik
    Tyukin, Ivan
    Nijmeijer, Henk
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (21) : 2119 - 2128
  • [34] Synchronization of stochastic hybrid oscillators driven by a common switching environment
    Bressloff, Paul C.
    MacLaurin, James
    CHAOS, 2018, 28 (12)
  • [35] Synchronization in populations of sparsely connected pulse-coupled oscillators
    Rothkegel, A.
    Lehnertz, K.
    EPL, 2014, 105 (03)
  • [36] A Stochastic Approach to the Synchronization of Coupled Oscillators
    Biccari, Umberto
    Zuazua, Enrique
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [37] Synchronization of Two Coupled Phase Oscillators
    Wu, Yongqing
    Li, Changpin
    Sun, Weigang
    Wu, Yujiang
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 105 - 113
  • [38] Synchronization and entrainment of coupled circadian oscillators
    Komin, N.
    Murza, A. C.
    Hernandez-Garcia, E.
    Toral, R.
    INTERFACE FOCUS, 2011, 1 (01) : 167 - 176
  • [39] Synchronization of oscillators not sharing a common ground?
    Tuna, S. Emre
    AUTOMATICA, 2023, 151
  • [40] Averaging and Cluster Synchronization of Kuramoto Oscillators
    Kato, Rui
    Ishii, Hideaki
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1497 - 1502