Semiclassical Spectral Series Localized on a Curve for the Gross-Pitaevskii Equation with a Nonlocal Interaction

被引:3
作者
Kulagin, Anton E. [1 ,2 ]
Shapovalov, Alexander, V [3 ]
Trifonov, Andrey Y. [1 ]
机构
[1] Tomsk Polytech Univ, Dept Math & Comp Sci, 30 Lenin A, Tomsk 634050, Russia
[2] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, 1 Academician Zuev Sq, Tomsk 634055, Russia
[3] Tomsk State Univ, Dept Theoret Phys, 1 Novosobornaya Sq, Tomsk 634050, Russia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
stationary Gross-Pitaevskii equation; nonlocal interaction; nonlinear spectral problem; Bose-Einstein condensate; semiclassical approximation; symmetry operators; BOSE-EINSTEIN CONDENSATION; GROUND-STATE SOLUTION; APPROXIMATION; ASYMPTOTICS; ENERGY;
D O I
10.3390/sym13071289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross-Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross-Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross-Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross-Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension.
引用
收藏
页数:22
相关论文
共 50 条
[21]   The stochastic Gross-Pitaevskii equation and some applications [J].
Cockburn, S. P. ;
Proukakis, N. P. .
LASER PHYSICS, 2009, 19 (04) :558-570
[22]   The multisymplectic numerical method for Gross-Pitaevskii equation [J].
Tian, YiMin ;
Qin, MengZhao ;
Zhang, YongMing ;
Ma, Tao .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (06) :449-458
[23]   Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation [J].
R. Fedele ;
D. Jovanović ;
B. Eliasson ;
S. De Nicola ;
P. K. Shukla .
The European Physical Journal B, 2010, 74 :97-116
[24]   Comparison of Finite-Difference Schemes for the Gross-Pitaevskii Equation [J].
Trofimov, V. A. ;
Peskov, N. V. .
MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (01) :109-126
[25]   Localized modes in the Gross-Pitaevskii equation with a parabolic trapping potential and a nonlinear lattice pseudopotential [J].
Alfimov, G. L. ;
Gegel, L. A. ;
Lebedev, M. E. ;
Malomed, B. A. ;
Zezyulin, D. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 66 :194-207
[26]   Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation [J].
Fedele, R. ;
Jovanovic, D. ;
Eliasson, B. ;
De Nicola, S. ;
Shukla, P. K. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (01) :97-116
[27]   On the Gross-Pitaevskii Equation with Pumping and Decay: Stationary States and Their Stability [J].
Sierra, Jesus ;
Kasimov, Aslan ;
Markowich, Peter ;
Weishaeupl, Rada-Maria .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (03) :709-739
[28]   The equation of state of one-dimensional Gross-Pitaevskii equation [J].
Prayitno, T. B. .
CONFERENCE OF THEORETICAL PHYSICS AND NONLINEAR PHENOMENA (CTPNP) 2014 - FROM UNIVERSE TO STRING'S SCALE, 2014, 539
[29]   SCATTERING THEORY FOR THE GROSS-PITAEVSKII EQUATION IN THREE DIMENSIONS [J].
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (04) :657-707
[30]   Integrability of the Gross-Pitaevskii equation with Feshbach resonance management [J].
Zhao, Dun ;
Luo, Hong-Gang ;
Chai, Hua-Yue .
PHYSICS LETTERS A, 2008, 372 (35) :5644-5650