Semiclassical Spectral Series Localized on a Curve for the Gross-Pitaevskii Equation with a Nonlocal Interaction

被引:3
|
作者
Kulagin, Anton E. [1 ,2 ]
Shapovalov, Alexander, V [3 ]
Trifonov, Andrey Y. [1 ]
机构
[1] Tomsk Polytech Univ, Dept Math & Comp Sci, 30 Lenin A, Tomsk 634050, Russia
[2] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, 1 Academician Zuev Sq, Tomsk 634055, Russia
[3] Tomsk State Univ, Dept Theoret Phys, 1 Novosobornaya Sq, Tomsk 634050, Russia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
stationary Gross-Pitaevskii equation; nonlocal interaction; nonlinear spectral problem; Bose-Einstein condensate; semiclassical approximation; symmetry operators; BOSE-EINSTEIN CONDENSATION; GROUND-STATE SOLUTION; APPROXIMATION; ASYMPTOTICS; ENERGY;
D O I
10.3390/sym13071289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross-Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross-Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross-Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross-Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The Gross-Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve
    Shapovalov, Alexander V.
    Kulagin, Anton E.
    Trifonov, Andrey Yu.
    SYMMETRY-BASEL, 2020, 12 (02):
  • [2] Fundamental gaps of the Gross-Pitaevskii equation with repulsive interaction
    Bao, Weizhu
    Ruan, Xinran
    ASYMPTOTIC ANALYSIS, 2018, 110 (1-2) : 53 - 82
  • [3] Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
    Lisok, Aleksandr L.
    Shapovalov, Aleksandr V.
    Trifonov, Andrey Yu
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [4] Transverse Evolution Operator for the Gross-Pitaevskii Equation in Semiclassical Approximation
    Borisov, Alexey
    Shapovalov, Alexander
    Trifonov, Andrey
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1
  • [5] Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation
    Bao, Weizhu
    Lim, Fong Yin
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 1, 2009, 67 : 195 - +
  • [6] Existence and decay of traveling waves for the nonlocal Gross-Pitaevskii equation
    de Laire, Andre
    Lopez-Martinez, Salvador
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (09) : 1732 - 1794
  • [7] A critique on the misuse of the Gross-Pitaevskii equation
    Geltman, Sydney
    EPL, 2009, 87 (01)
  • [8] Quantum Gross-Pitaevskii Equation
    Haegeman, Jutho
    Draxler, Damian
    Stojevic, Vid
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    SCIPOST PHYSICS, 2017, 3 (01):
  • [9] Stochastic projected Gross-Pitaevskii equation
    Rooney, S. J.
    Blakie, P. B.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [10] Numerical solution for the Gross-Pitaevskii equation
    Hua, Wei
    Liu, Xueshen
    Ding, Peizhu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 243 - 255